Reputation: 956
I'm trying to do a kind of conditional rowSums
.
I have a data frame with four columns containing 1's and 0's, and another variables that indicates which columns should be added to make the row totals.
For example:
df <- matrix(rbinom(40, 1, 0.5), ncol = 4)
df <- as.data.frame.matrix(df)
df$group <- sample(c('12', '123', '1234'), 10, replace = T)
If the group is 12
, then columns V1:V2 should be added, if 123
then V1:V3, and if 1234
then columns V1:V4.
I've tried a labour-intensive approach:
df$total12 <- rowSums(df[,c('V1', 'V2')])
df$total123 <- rowSums(df[,c('V1', 'V2', 'V3')])
df$total1234 <- rowSums(df[,c('V1', 'V2', 'V3', 'V4')])
df$total <- ifelse(df$group == '12', df$total12,
ifelse(df$group == '123', df$total123, df$total1234))
Is there a simpler way to do this?
Upvotes: 3
Views: 129
Reputation: 24139
Here is another option using the switch
function. This is more readable and easier to extend then a series of nested ifelse
statements.
df$total<-sapply(1:length(df$group), function(i){switch(df$group[i],
"12"=rowSums(df[i, c('V1', 'V2')]),
"123"=rowSums(df[i, c('V1', 'V2', 'V3')]),
"1234"=rowSums(df[i, c('V1', 'V2', 'V3', 'V4')]))})
Basically, loops through the elements of df$group and selects the proper formula to use. If your dataset isn't too long, performance should be acceptable.
Upvotes: 1
Reputation: 887951
Here is an option. We create a row/column index by splitting the 'group', extract the values of 'df' based on the index and get the sum
grouped by the row
index
lst <- strsplit(df$group, "")
i1 <- cbind(rep(seq_len(nrow(df)), lengths(lst)), as.integer(unlist(lst)))
df$total <- ave(df[-5][i1], i1[,1], FUN = sum)
Upvotes: 1