Newb10100
Newb10100

Reputation: 41

group by and summarize with conditional date range aspect - dplyr?

disclosure - this is my first SO question, my apologies if this is a repeat question but I have looked for a while now and have not found an answer to this particular scenario

R version: 3.4.2

I want an efficient way of grouping data by a certain identifier and then summarize based on a condition - dynamically for each row. Specifically, group by ID and then sum how many instances another variable occurred (urgent visits) IF the other instance was within 1 year of the current row.

Here is an example of what the data looks like to start:

Updated to include example of 2 urgent cases

library(lubridate)
   > dat <- data.frame("ID" = c(6,6,6,7,7,10,11,11,11),
                      "Admit_Dt" = as.Date(c('2013-08-12', '2013-12-12', '2016-01-03','2011-04-01', '2011-09-20','2012-02-19','2014-06-24','2014-08-12','2014-09-01')), 
                      "Urgent" = c(0,1,1,1,0,0,1,1,1)) 
   > dat

| ID | Admit_Dt   | Urgent|
|  6 | 2013-08-12 |      1| 
|  6 | 2013-12-12 |      0|
|  6 | 2016-01-03 |      1|
|  7 | 2011-04-01 |      1|
|  7 | 2011-09-20 |      0|
| 10 | 2012-02-19 |      0|
| 11 | 2014-06-24 |      1|
| 11 | 2014-08-12 |      1|
| 11 | 2014-09-01 |      1|

I want to first group by ID and then sum how many urgent visits occurred within one year of each Admit_Dt for a given group.

This over complicated code below produces what I want but the dataset I am working with is very large and I this is pretty inefficient. I'm curious if there is a method using 'dplyr' to achieve what I am trying to do:

   > dat$Urgent_1yrSum <- unlist(sapply(1:length(unique(dat$ID)), function(i) {
    grouped <-  subset(dat, ID == unique(dat$ID)[i])
      output <- do.call(rbind, lapply(1:nrow(grouped), function(y){
    urgent_sum_1year <- sum(grouped[grouped$Admit_Dt < grouped$Admit_Dt[y] & grouped$Admit_Dt > (grouped$Admit_Dt[y] - dyears(1)), "Urgent"])
     }))
      return(output)
}
))

> dat
| ID | Admit_Dt   | Urgent| Urgent_1yrSum|
|  6 | 2013-08-12 |      1|          0|
|  6 | 2013-12-12 |      0|          1|
|  6 | 2016-01-03 |      1|          0|
|  7 | 2011-04-01 |      1|          0|
|  7 | 2011-09-20 |      0|          1|
| 10 | 2012-02-19 |      0|          0|
| 11 | 2014-06-24 |      1|          0|
| 11 | 2014-08-12 |      1|          1|
| 11 | 2014-09-01 |      1|          2|

Thanks for any help!!

Upvotes: 4

Views: 1002

Answers (2)

Mike
Mike

Reputation: 4370

I couldn't get your code to work so I tried to see if I could get this to work. I first inner joined to get all combos of dates by ID. When you subtract them you can then use filter to see who received a visit within a year of each date and then summarise.

dat <- data.frame("ID" = c(6,6,6,7,7,10,11,11),
                  "Admit_Dt" = c('2013-08-12', '2013-12-12', '2016-01-03','2011-04-01', '2011-09-20','2012-02-19','2014-06-24','2014-08-12'), 
                  "Urgent" = c(0,1,1,1,0,0,1,1),stringsAsFactors = FALSE)
library(dplyr)


dat2 <- inner_join(dat,select(dat,ID,Admit_Dt,Urgent),by = "ID") %>% 
        #Inner Join by ID to get every combo of dates
        #Subtract dates from eachother 
        mutate(datediff = as.Date(Admit_Dt.x) - as.Date(Admit_Dt.y),
               ID = ID) %>%
        #get dates that occured within one year of visit
        #for each date
        filter(datediff > 0 & datediff <= 365) %>% 
        #group by person
        group_by(ID,Admit_Dt.x) %>% 
        #count urgent visits
       mutate(urgent_visits = max(Urgent.x,Urgent.y,na.rm=TRUE)) %>% 
    summarise(vs = sum(urgent_visits))
#Join back on to df

dat3 <- left_join(dat,dat2,by = c("ID" = "ID", "Admit_Dt"="Admit_Dt.x"))

Upvotes: 5

TBT8
TBT8

Reputation: 764

Here's an answer using dplyr, list columns, and purrr. I'm assuming there are no duplicate IDs and Admit_Dts otherwise I'm pretty sure this doesn't work right.

dat <- data.frame("ID" = c(6,6,6,7,7,10,11,11),
           "Admit_Dt" = c('2013-08-12', '2013-12-12', '2016-01-03','2011-04-01', '2011-09-20','2012-02-19','2014-06-24','2014-08-12'), 
           "Urgent" = c(0,1,1,1,0,0,1,1), stringsAsFactors = F)


library(dplyr)
library(purrr)
library(lubridate)

isUrgentAndWithinYear <- function(urgent, date, date1){
     sum( urgent == 1 & abs(as.numeric(difftime(date, date1, units = "weeks"))) < 52)
} 

dat %>%
     mutate(Admit_Dt = ymd(Admit_Dt)) %>% 
     group_by(ID) %>%
     mutate(urgents = list(Urgent),
            admits = list(Admit_Dt)
            )%>% 
     group_by(ID, Admit_Dt) %>% 
     mutate(Urgent_1yrSum = map2_dbl(urgents, admits, ~ isUrgentAndWithinYear(.x, .y, Admit_Dt) )) %>% 
     mutate(Urgent_1yrSum = Urgent_1yrSum - Urgent) %>% 
     select(-urgents, -admits)

Upvotes: 1

Related Questions