Reputation: 43
I am trying to use Numba Decorator with my class. However, I am receiving the the following error. I checked the input dimension and it looks correct but still getting the same error. Any idea on how to resolve the issue?
spec = [('w_x', nb.int32), ('w_a', nb.int32),('mu_a', nb.int64[:]),
('sig_a',nb.int64[:]),('mu_x', nb.int64[:]),('sig_x', nb.int32[:]),
('mu_a_a',nb.float64[:,:]),('sig_a_a', nb.float64[:,:]), ('mu_x_a',
nb.int32[:]),('sig_x_a', nb.float32[:,:]),('mu_0', nb.boolean),
('sig_0', nb.boolean),('beta', nb.int32),('policy', nb.uint8)]
@nb.jitclass(spec)
class learner(object):
def __init__ (self, w_x, w_a, beta, policy):
'''
initialize:
w_x: the dim of customer features
w_a: the dim of ad features
mu_a: the prior of mean of weights on ad
sig_a: the prior of var of weights on ad
mu_x: the prior of mean of weights on customer
sig_x: the prior of var of weights on customer
mu_a_a: the prior of interactions between ad segments
sig_a_a: the prior of var of interactions between ad segments
mu_x_a: the prior of mean of interactions between customers and ad
segments
sig_x_a: the prior of var of interactions between customers and ad
segments
'''
self.w_x = w_x
self.w_a = w_a
self.mu_a = np.zeros(self.w_a)
self.sig_a = np.ones(self.w_a)
self.mu_x = np.zeros(self.w_x)
self.sig_x = np.ones(self.w_x)
self.mu_a_a = np.zeros((self.w_a, self.w_a))
#self.mu_a_a = np.triu(self.mu_a_a, k=1)
self.sig_a_a = np.ones((self.w_a, self.w_a))
#self.sig_a_a = np.triu(self.sig_a_a, k=1)
self.mu_x_a = np.zeros((self.w_x, self.w_a))
self.sig_x_a = np.ones((self.w_x, self.w_a))
#the intercept term w_0
self.mu_0 = 0
self.sig_0 = 1
self.beta = beta
self.policy = policy
Below is the error message:
File "C:\Users\MSHAHAB2\AppData\Local\Continuum\anaconda3\lib\site-
packages\numba\six.py", line 659, in reraise
raise value numba.errors.LoweringError: Failed at nopython (nopython mode
backend)
Can only insert i64* at [4] in {i8*, i8*, i64, i64, i64*, [1 x i64], [1 x
i64]}: got double*
File "batch_mode_function.py", line 147:
def __init__ (self, w_x, w_a, beta, policy):
<source elided>
self.w_a = w_a
self.mu_a = np.zeros(self.w_a)
^
[1] During: lowering "(self).mu_a = $0.9" at
W:\GRMOS\MShahabi\MNV\HillClimbSim\batch_mode_function.py (147)
[2] During: resolving callee type:
jitclass.learner#1e390f65798<w_x:int32,w_a:int32,mu_a:array(int64, 1d,
A),sig_a:array(int64, 1d, A),mu_x:array(int64, 1d, A),sig_x:array(int32, 1d,
A),mu_a_a:array(float64, 2d, A),sig_a_a:array(float64, 2d,
A),mu_x_a:array(int32, 1d, A),sig_x_a:array(float32, 2d,
A),mu_0:bool,sig_0:bool,beta:int32,policy:uint8>
[3] During: typing of call at <string> (3)
Upvotes: 1
Views: 594
Reputation: 5784
The error message which is being displayed is quite easy to resolve. np.zeros
creates an array of dtype=np.float64
per default, which is nb.float64
in numba. You have to specify the dtype
in np.zeros
to get an array of np.int64
or np.int32
:
self.mu_a = np.zeros(self.w_a, dtype=np.int64)
self.sig_a = np.ones(self.w_a, dtype=np.int64)
self.mu_x = np.zeros(self.w_x, dtype=np.int64)
self.sig_x = np.ones(self.w_x, dtype=np.int32)
The same for the arrays self.mu_x_a
and self.sig_x_a
self.mu_x_a = np.zeros((self.w_x, self.w_a), dtype=np.int32)
self.sig_x_a = np.ones((self.w_x, self.w_a), dtype=np.float32)
For self.mu_x_a
you also missed the second dimension in spec
. It has to be:
spec = [('mu_x_a', nb.int32[:, :])]
Then there is a follow up error when creating the array self.mu_a_a
. Numba raises an error, that the shape tuple (self.w_a, self.w_a)
is of type (i64, i32)
. This obviously is some bug in numba
with the type inference/casting. All nb.int32
types seem to be casted to nb.int64
automatically.
There are two workarounds for this:
Workaround 1:
Replace the type signature of self.w_a
with nb.int64
(and also of self.w_x
, since this is needed for self.mu_x_a
and self.sig_x_a
):
spec = [('w_x', nb.int64), ('w_a', nb.int64)]
OR Workaround 2: Don't use the somehow inconsistently cast instance variables. Instead use the given inputs:
self.mu_a_a = np.zeros((w_a, w_a))
self.sig_a_a = np.ones((w_a, w_a))
self.mu_x_a = np.zeros((w_x, w_a), dtype=np.int32)
self.sig_x_a = np.ones((w_x, w_a), dtype=np.float32)
I recommend using workaround 1, since currently int32 is cast to int64 in numba anyways. Using Workaround 1 it should look like this:
spec = [('w_x', nb.int64), ('w_a', nb.int64),('mu_a', nb.int64[:]),
('sig_a',nb.int64[:]),('mu_x', nb.int64[:]),('sig_x', nb.int32[:]),
('mu_a_a',nb.float64[:,:]),('sig_a_a', nb.float64[:,:]), ('mu_x_a',
nb.int32[:, :]),('sig_x_a', nb.float32[:,:]),('mu_0', nb.boolean),
('sig_0', nb.boolean),('beta', nb.int32),('policy', nb.uint8)]
@nb.jitclass(spec)
class learner(object):
def __init__ (self, w_x, w_a, beta, policy):
'''
initialize:
w_x: the dim of customer features
w_a: the dim of ad features
mu_a: the prior of mean of weights on ad
sig_a: the prior of var of weights on ad
mu_x: the prior of mean of weights on customer
sig_x: the prior of var of weights on customer
mu_a_a: the prior of interactions between ad segments
sig_a_a: the prior of var of interactions between ad segments
mu_x_a: the prior of mean of interactions between customers and ad
segments
sig_x_a: the prior of var of interactions between customers and ad
segments
'''
self.w_x = w_x
self.w_a = w_a
self.mu_a = np.zeros(self.w_a, dtype=np.int64)
self.sig_a = np.ones(self.w_a, dtype=np.int64)
self.mu_x = np.zeros(self.w_x, dtype=np.int64)
self.sig_x = np.ones(self.w_x, dtype=np.int32)
self.mu_a_a = np.zeros((self.w_a, self.w_a))
#self.mu_a_a = np.triu(self.mu_a_a, k=1)
self.sig_a_a = np.ones((self.w_a, self.w_a))
#self.sig_a_a = np.triu(self.sig_a_a, k=1)
self.mu_x_a = np.zeros((self.w_x, self.w_a), dtype=np.int32)
self.sig_x_a = np.ones((self.w_x, self.w_a), dtype=np.float32)
#the intercept term w_0
self.mu_0 = 0
self.sig_0 = 1
self.beta = beta
self.policy = policy
For workaround 2 you can leave the specs for w_x
and w_a
as nb.int32
and just replace the array creation of the following 4 arrays with:
self.mu_a_a = np.zeros((w_a, w_a))
self.sig_a_a = np.ones((w_a, w_a))
self.mu_x_a = np.zeros((w_x, w_a), dtype=np.int32)
self.sig_x_a = np.ones((w_x, w_a), dtype=np.float32)
Since I guess the casting behavious is a bug, I recommend that you report it with a link to this thread.
Upvotes: 2