shtuken
shtuken

Reputation: 161

How do functional languages handle shared state data?

I've been learning about functional programming and see that it can certainly make parallelism easier to handle, but I do not see how it makes handling shared resources easier. I've seen people talk about variable immutability being a key factor, but how does that help two threads accessing the same resource? Say two threads are adding a request to a queue. They both get a copy of the queue, make a new copy with their request added (since the queue is immutable), and then return the new queue. The first request to return will be overridden by the second, as the copies of the queue each thread got did not have the other thread's request present. So I assume there is a locking mechanism a la mutex available in functional languages? How then does that differ from an imperative approach to the problem? Or do practical applications of functional programming still require some imperative operations to handle shared resources?

Upvotes: 2

Views: 701

Answers (1)

Davislor
Davislor

Reputation: 15144

As soon as your global data can be updated. you're breaking the pure functional paradigm. In that sense, you need some sort of imperative structure. However, this is important enough that most functional languages offer a way to do this, and you need it to be able to communicate with the rest of the world anyway. (The most complicated formal one is the IO monad of Haskell.) Apart from simple bindings for some other synchronization library, they would probably try to implement a lock-free, wait-free data structure if possible.

Some approaches include:

  • Data that is written only once and never altered can be accessed safely with no locks or waiting on most CPUs. (There is typically a memory fence instruction to ensure that the memory updates in the right order for both the producer and the consumer.)
  • Some data structures, such as a difference list, have the property that you can tack on updates without invalidating any existing data. Let's say you have the association list [(1,'a'), (2,'b'), (3,'c')] and you want to update by changing the third entry to 'g'. If you express this as (3,'g'):originalList, then you can update the current list with the new version, and keep originalList valid and unaltered. Any thread that saw it can still safely use it.
  • Even if you have to work around the garbage collector, each thread can make its own thread-local copy of the shared state so long as the original does not get deleted while it is being copied. The underlying low-level implementation would be a producer/consumer model that atomically updates a pointer to the state data and inserts memory-fence instructions before the update and the copy operations.
  • If the program has a way to compare-and-swap atomically, and the garbage collector is aware, each thread can use the receive-copy-update pattern. A thread-aware garbage collector will keep the older data around as long as any thread is using it, and recycle it when the last thread is done with it. This should not require locking in software (for example, on modern ISAs, incrementing or decrementing a word-sized counter is an atomic operation, and atomic compare-and-swap is wait-free).
  • The functional language can add an extension to call an IPC library written in some other language, and update data in place. In Haskell, this would be defined with the IO monad to ensure sequential memory consistency, but nearly every functional language has some way to exchange data with the system libraries.

So, a functional language does offer some guarantees that are useful for efficient concurrent programming. For example, most current ISAs impose no extra overhead on multiple reader threads when there is at most a single writer, certain consistency bugs cannot occur, and functional languages are well-suited to express this pattern.

Upvotes: 2

Related Questions