Reputation: 421
Below are two dataframes that I am comparing. I would like to get the corresponding column value under column Usage
in df2
when I am able to match the column Item
. Appreciate help.
df1 = pd.DataFrame({ 'Number':[1.0,3.0,4.0,5.0,8.0,12.0,32.0,58.0,72.0] , 'Item': ['Phone', 'Watch', 'Pen', 'Pencil', 'Pencil', 'toolkit', 'box', 'fork', 'toy']})
df2 = pd.DataFrame({'Number':[3.0, 4.0, 8.0, 12.0, 15.0, 32.0, 54.0, 58.0, 72.0], 'Item':['Watch', 'Pen', 'Pencil', 'Eraser', 'bottle', 'box', 'toolkit', 'fork', 'Phone'], 'Usage':['Time', 'Writing', 'Writing', 'Cleaning', 'Water', 'storage', 'Utility', 'Eat', 'Communication']})
df1
Number Item
0 1.0 Phone
1 3.0 Watch
2 4.0 Pen
3 5.0 Pencil
4 8.0 Pencil
5 12.0 toolkit
6 32.0 box
7 58.0 fork
8 72.0 toy
df2
Number Item Usage
0 3.0 Watch Time
1 4.0 Pen Writing
2 8.0 Pencil Writing
3 12.0 Eraser Cleaning
4 15.0 bottle Water
5 32.0 box storage
6 54.0 toolkit Utility
7 58.0 fork Eat
8 72.0 Phone Communication
Code used for matching is below. It says 'MatchedBoth' even when only the number has matched. This needs to be fixed.
import numpy as np
df3 = df1.copy()
df3['Matching'] = np.nan
df3.loc[(df3.Number.isin(df2.Number)) & (df3.Item.isin(df2.Item)), 'Matching'] = 'MatchedBoth'
df3.loc[(df3.Number.isin(df2.Number)) & (~df3.Item.isin(df2.Item)),'Matching'] = 'Matched Number Only'
df3.Matching.fillna('No Match', inplace=True)
In the same code is there any possibility to embed a return value that can fetch the Usage
column value from df2
,corresponding per matched row. It may be a case where there are multiple rows that could match and hence we might need to get the corresponding Usage
column values into a list or something like that in the final output.
Note: In my actual dataframe I have several columns apart from these and hence if I use merge it results in a huge dataframe. I'd just like to create a new column with the list of corresponding matched values found in the Usage
column in df2.
Output should look something like below.
df3
Number Item Matching Usage
0 1.0 Phone No Match NaN
1 3.0 Watch MatchedBoth Time
2 4.0 Pen MatchedBoth Writing
3 5.0 Pencil No Match NaN
4 8.0 Pencil MatchedBoth Writing
5 12.0 toolkit Matched Number Only Utility
6 32.0 box MatchedBoth storage
7 58.0 fork MatchedBoth Eat
8 72.0 toy Matched Number Only Play
Upvotes: 3
Views: 15641
Reputation: 1316
You could try something like this:
df3 = df1.merge(df2, on='Number', how='left')
df3['Matching'] = np.where(df3.Productdetailed == df3.Item, 'Matched', 'No Match')
df3.drop('Productdetailed', axis=1, inplace=True)
which will return the output you indicated in your question.
EDIT after clarification:
def find_match(row):
if (row.Number in df2.Number.values) & (row.Item in df2.Item.values):
return "MatchedBoth"
elif ((row.Number in df2.Number.values) & ~(row.Item in df2.Item.values)):
return "Matched Number Only"
else:
return "No Match"
df3['Matching'] = df3.apply(find_match, axis=1)
df3['Usage'] = df3.Item.map(df2.set_index('Item').Usage)
Upvotes: 3