Reputation: 1879
I have a dataframe structured like this:
df_all:
day_time LCLid energy(kWh/hh)
2014-02-08 23:00:00 MAC000006 0.077
2014-02-08 23:30:00 MAC000006 0.079
...
2014-02-08 23:00:00 MAC000007 0.045
...
There are four sequential datetimes (accross all LCLid's) missing from the data that I want to fill with previous and trailing values.
If the dataframe was split into sub-dataframes (df), one per LCLid eg as per:
gb = df.groupby('LCLid')
df_list = [gb.get_group(x) for x in gb.groups]
Then I could do this for each df in df_list:
#valid data before gap
prev_row = df.loc['2013-09-09 22:30:00'].copy()
#valid data after gap
post_row = df.loc['2013-09-10 01:00:00'].copy()
df.loc[pd.to_datetime('2013-09-09 23:00:00')] = prev_row
df.loc[pd.to_datetime('2013-09-09 23:30:00')] = prev_row
df.loc[pd.to_datetime('2013-09-10 00:00:00')] = post_row
df.loc[pd.to_datetime('2013-09-10 00:30:00')] = post_row
df = df.sort_index()
How can I do this on the df_all one one go to fill the missing data with 'valid' data just from each LCLid?
Upvotes: 2
Views: 4162
Reputation: 1295
The input DataFrame:
LCLid energy(kWh/hh)
day_time
2014-01-01 00:00:00 MAC000006 0.270453
2014-01-01 00:00:00 MAC000007 0.170603
2014-01-01 00:30:00 MAC000006 0.716418
2014-01-01 00:30:00 MAC000007 0.276678
2014-01-01 03:00:00 MAC000006 0.819146
2014-01-01 03:00:00 MAC000007 0.027490
2014-01-01 03:30:00 MAC000006 0.688879
2014-01-01 03:30:00 MAC000007 0.868017
What you need to do:
full_idx = pd.date_range(start=df.index.min(), end=df.index.max(), freq='30T')
df = (
df
.groupby('LCLid', as_index=False)
.apply(lambda group: group.reindex(full_idx, method='nearest'))
.reset_index(level=0, drop=True)
.sort_index()
)
Result:
LCLid energy(kWh/hh)
2014-01-01 00:00:00 MAC000006 0.270453
2014-01-01 00:00:00 MAC000007 0.170603
2014-01-01 00:30:00 MAC000006 0.716418
2014-01-01 00:30:00 MAC000007 0.276678
2014-01-01 01:00:00 MAC000006 0.716418
2014-01-01 01:00:00 MAC000007 0.276678
2014-01-01 01:30:00 MAC000006 0.716418
2014-01-01 01:30:00 MAC000007 0.276678
2014-01-01 02:00:00 MAC000006 0.819146
2014-01-01 02:00:00 MAC000007 0.027490
2014-01-01 02:30:00 MAC000006 0.819146
2014-01-01 02:30:00 MAC000007 0.027490
2014-01-01 03:00:00 MAC000006 0.819146
2014-01-01 03:00:00 MAC000007 0.027490
2014-01-01 03:30:00 MAC000006 0.688879
2014-01-01 03:30:00 MAC000007 0.868017
import numpy as np
import pandas as pd
# Building an example DataFrame that looks like yours
df = pd.DataFrame({
'day_time': [
pd.Timestamp(2014, 1, 1, 0, 0),
pd.Timestamp(2014, 1, 1, 0, 0),
pd.Timestamp(2014, 1, 1, 0, 30),
pd.Timestamp(2014, 1, 1, 0, 30),
pd.Timestamp(2014, 1, 1, 3, 0),
pd.Timestamp(2014, 1, 1, 3, 0),
pd.Timestamp(2014, 1, 1, 3, 30),
pd.Timestamp(2014, 1, 1, 3, 30),
],
'LCLid': [
'MAC000006',
'MAC000007',
'MAC000006',
'MAC000007',
'MAC000006',
'MAC000007',
'MAC000006',
'MAC000007',
],
'energy(kWh/hh)': np.random.rand(8)
},
).set_index('day_time')
Result:
LCLid energy(kWh/hh)
day_time
2014-01-01 00:00:00 MAC000006 0.270453
2014-01-01 00:00:00 MAC000007 0.170603
2014-01-01 00:30:00 MAC000006 0.716418
2014-01-01 00:30:00 MAC000007 0.276678
2014-01-01 03:00:00 MAC000006 0.819146
2014-01-01 03:00:00 MAC000007 0.027490
2014-01-01 03:30:00 MAC000006 0.688879
2014-01-01 03:30:00 MAC000007 0.868017
Notice how we're missing the following timestamps:
2014-01-01 01:00:00
2014-01-01 01:30:00
2014-01-02 02:00:00
2014-01-02 02:30:00
First thing to know is that df.reindex()
allows you to fill in missing index values, and will default to NaN
for missing values. In your case, you would want to supply the full timestamp range index, including the values that don't show up in your starting DataFrame.
Here I used pd.date_range()
to list all timestamps between your min and max starting index values, taking strides of 30 minutes. WARNING: this way of doing it means that if your missing timestamp values are at the beginning or the end, you're not adding them back! So maybe you want to specify start
and end
explicitly.
full_idx = pd.date_range(start=df.index.min(), end=df.index.max(), freq='30T')
Result:
DatetimeIndex(['2014-01-01 00:00:00', '2014-01-01 00:30:00',
'2014-01-01 01:00:00', '2014-01-01 01:30:00',
'2014-01-01 02:00:00', '2014-01-01 02:30:00',
'2014-01-01 03:00:00', '2014-01-01 03:30:00'],
dtype='datetime64[ns]', freq='30T')
Now if we use that to reindex one of your grouped sub-DataFrames, we would get this:
grouped_df = df[df.LCLid == 'MAC000006']
grouped_df.reindex(full_idx)
Result:
LCLid energy(kWh/hh)
2014-01-01 00:00:00 MAC000006 0.270453
2014-01-01 00:30:00 MAC000006 0.716418
2014-01-01 01:00:00 NaN NaN
2014-01-01 01:30:00 NaN NaN
2014-01-01 02:00:00 NaN NaN
2014-01-01 02:30:00 NaN NaN
2014-01-01 03:00:00 MAC000006 0.819146
2014-01-01 03:30:00 MAC000006 0.688879
You said you want to fill missing values using the closest available surrounding value. This can be done during reindexing, as follows:
grouped_df.reindex(full_idx, method='nearest')
Result:
LCLid energy(kWh/hh)
2014-01-01 00:00:00 MAC000006 0.270453
2014-01-01 00:30:00 MAC000006 0.716418
2014-01-01 01:00:00 MAC000006 0.716418
2014-01-01 01:30:00 MAC000006 0.716418
2014-01-01 02:00:00 MAC000006 0.819146
2014-01-01 02:30:00 MAC000006 0.819146
2014-01-01 03:00:00 MAC000006 0.819146
2014-01-01 03:30:00 MAC000006 0.688879
Now we'd like to apply this transformation to every group in your DataFrame, where
a group is defined by its LCLid
.
(
df
.groupby('LCLid', as_index=False) # use LCLid as groupby key, but don't add it as a group index
.apply(lambda group: group.reindex(full_idx, method='nearest')) # do this for each group
.reset_index(level=0, drop=True) # get rid of the automatic index generated during groupby
.sort_index() # This is optional, just in case you want timestamps in chronological order
)
Result:
LCLid energy(kWh/hh)
2014-01-01 00:00:00 MAC000006 0.270453
2014-01-01 00:00:00 MAC000007 0.170603
2014-01-01 00:30:00 MAC000006 0.716418
2014-01-01 00:30:00 MAC000007 0.276678
2014-01-01 01:00:00 MAC000006 0.716418
2014-01-01 01:00:00 MAC000007 0.276678
2014-01-01 01:30:00 MAC000006 0.716418
2014-01-01 01:30:00 MAC000007 0.276678
2014-01-01 02:00:00 MAC000006 0.819146
2014-01-01 02:00:00 MAC000007 0.027490
2014-01-01 02:30:00 MAC000006 0.819146
2014-01-01 02:30:00 MAC000007 0.027490
2014-01-01 03:00:00 MAC000006 0.819146
2014-01-01 03:00:00 MAC000007 0.027490
2014-01-01 03:30:00 MAC000006 0.688879
2014-01-01 03:30:00 MAC000007 0.868017
Relevant doc:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.date_range.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.core.groupby.GroupBy.apply.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_index.html
Upvotes: 4