Reputation: 10517
I'm new to spark and trying to use spark to read json file like this. Using spark 2.3 and scala 2.11 on ubuntu18.04, java1.8:
cat my.json:
{ "Name":"A", "No_Of_Emp":1, "No_Of_Supervisors":2}
{ "Name":"B", "No_Of_Emp":2, "No_Of_Supervisors":3}
{ "Name":"C", "No_Of_Emp":13,"No_Of_Supervisors":6}
And my scala code is:
val dir = System.getProperty("user.dir")
val conf = new SparkConf().setAppName("spark sql")
.set("spark.sql.warehouse.dir", dir)
.setMaster("local[4]");
val spark = SparkSession.builder().config(conf).getOrCreate()
val df = spark.read.json("my.json")
df.show()
df.printSchema()
df.select("Name").show()
OK, everything is fine. But if I change the json file to be multiline, standard json format:
[
{
"Name": "A",
"No_Of_Emp": 1,
"No_Of_Supervisors": 2
},
{
"Name": "B",
"No_Of_Emp": 2,
"No_Of_Supervisors": 3
},
{
"Name": "C",
"No_Of_Emp": 13,
"No_Of_Supervisors": 6
}
]
Then the program will report error:
+--------------------+
| _corrupt_record|
+--------------------+
| [|
| {|
| "Name": "A",|
| "No_Of_Emp"...|
| "No_Of_Supe...|
| },|
| {|
| "Name": "B",|
| "No_Of_Emp"...|
| "No_Of_Supe...|
| },|
| {|
| "Name": "C",|
| "No_Of_Emp"...|
| "No_Of_Supe...|
| }|
| ]|
+--------------------+
root
|-- _corrupt_record: string (nullable = true)
Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot resolve '`Name`' given input columns: [_corrupt_record];;
'Project ['Name]
+- Relation[_corrupt_record#0] json
I wish to know why this happens? A none standard json file without double [] will work(one object one line), but a more standardized formatted json will be a "corrupt record"?
Upvotes: 4
Views: 7108
Reputation: 1882
From the official Document
we can get some information about your question
Spark SQL can automatically infer the schema of a JSON dataset and load it as a Dataset[Row]. This conversion can be done using SparkSession.read.json() on either a Dataset[String], or a JSON file. Note that the file that is offered as a json file is not a typical JSON file. Each line must contain a separate, self-contained valid JSON object. For more information, please see JSON Lines text format, also called newline-delimited JSON. For a regular multi-line JSON file, set the multiLine option to true.
so if you wanted run it with your data multiline, set the multiLine
option to true
.
here is the example:
val conf = new SparkConf().setAppName("spark sql")
.set("spark.sql.warehouse.dir", dir)
.setMaster("local[*]")
val spark = SparkSession.builder().config(conf).getOrCreate()
val df = spark.read.option("multiLine", true).json("my.json")
df.show()
df.printSchema()
df.select("Name").show()
Upvotes: 4