Reputation: 869
I have a Pandas dataframe with one column of numbers, similar to this:
id - val
0 - 100
1 - 200
2 - 100
3 - 400
4 - 300
5 - 100
etc
What I would like to do is to add a second column which is a list/numpy array of the values from the previous 3 rows:
id - val - val_list
0 - 100 - [] # Or [NaN, NaN, NaN]
1 - 200 - [100] # Or [NaN, NaN, 100]
2 - 100 - [100, 200] # Or [NaN, 100, 200]
3 - 400 - [100, 200, 100]
4 - 300 - [200, 100, 400]
5 - 100 - [100, 400, 300]
etc
Any idea how to solve this efficiently, preferably without looping?
Upvotes: 4
Views: 832
Reputation: 306
Hi use the following simple code.
df = pd.DataFrame([100,200,100,400,300,100],columns =['Val'])
temp = pd.concat([df.shift(3),df.shift(2),df.shift(1)],axis=1)
df['val_list'] = temp.apply(lambda x:x.tolist(),axis=1)
#
df = pd.DataFrame([100,200,100,400,300,100],columns =['Val'])
N=3
temp = pd.DataFrame()
for i in range(N,0,-1):
temp = pd.concat([temp,df.shift(i)],axis=1)
df['val_list'] = temp.apply(lambda x:x.tolist(),axis=1)
Upvotes: 4
Reputation: 862611
First I think working with list
s in pandas is not good idea, if possible better is working with 2d numpy array here.
Use strides
if performance is important:
N = 3
x = np.concatenate([[np.nan] * (N), df['val'].values])
def rolling_window(a, window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
arr = rolling_window(x, N)
df['val_list'] = arr[:-1].tolist()
print (df)
id val val_list
0 0 100 [nan, nan, nan]
1 1 200 [nan, nan, 100.0]
2 2 100 [nan, 100.0, 200.0]
3 3 400 [100.0, 200.0, 100.0]
4 4 300 [200.0, 100.0, 400.0]
5 5 100 [100.0, 400.0, 300.0]
Upvotes: 5