vignesh asokan
vignesh asokan

Reputation: 145

Correlated sub query column in SPARK SQL is not allowed as part of a non-equality predicate

I am tryng to write a subquery in where clause like below. But i am getting "Correlated column is not allowed in a non-equality predicate:"

SELECT *, 
   holidays 
      FROM   ( 
          SELECT *, 
                 s.holidays, 
                 s.entity 
          FROM   transit_t tt 
          WHERE  ( 
                        SELECT Count(thedate) AS holidays 
                        FROM   fact_ent_rt 
                        WHERE  entity=tt.awborigin 
                        AND    ( 
                                      Substring(thedate,1,10)) BETWEEN (Substring(awbpickupdate,1,10)) AND    (
                                      Substring(deliverydate,1,10)) 
                        AND    ( 
                                      nholidayflag = true 
                               OR     weekendflag = true))) s

Any issues with this query. because i thought spark >2.0 supported subqueries in where clause. any suggestions would be appreciated. Thanks

The Input will be pick up date and delivery date from transit table. We need to find if there is a weekend falling between these dates(this data is available in fact_ent_rt ) and take the count of no of holidays.

The output i am getting is pyspark.sql.utils.AnalysisException: u"Correlated column is not allowed in a non-equality predicate:\nAggregate

Sample inputs:

Input 1: +---------++-------------------+-------------------+

|AWBOrigin||      AWBPickupDate|       DeliveryDate|

+---------++-------------------+-------------------+

|      LON||2018-09-01 08:52:00|2018-09-12 13:57:00|
|      DHA||2018-09-04 11:47:00|2018-09-08 07:30:00|
|      NIC||2009-01-01 01:47:00|2009-01-09 11:37:00
+---------+-----------+-----------------------------

Input 2 (fact_ent)

------+-------------------+-----------+------------

 Entity|            TheDate|WeekendFlag|NHolidayFlag

 ------+-------------------+-----------+------------

NIC|2009-01-01 00:00:00|      False|       False
NIC|2009-01-02 00:00:00|      False|       False
NIC|2009-01-03 00:00:00|       True|       False
NIC|2009-01-04 00:00:00|       True|       False
NIC|2009-01-05 00:00:00|      False|       False
NIC|2009-01-06 00:00:00|      False|       False
NIC|2009-01-07 00:00:00|      False|       False
NIC|2009-01-08 00:00:00|      False|       False
NIC|2009-01-09 00:00:00|      False|       False
NIC|2009-01-10 00:00:00|       True|       False
NIC|2009-01-11 00:00:00|       True|       False
NIC|2009-01-12 00:00:00|      False|       False
NIC|2009-01-13 00:00:00|      False|       False
NIC|2009-01-14 00:00:00|      False|       False
NIC|2009-01-15 00:00:00|      False|       False
NIC|2009-01-16 00:00:00|      False|       False
NIC|2009-01-17 00:00:00|       True|       False
NIC|2009-01-18 00:00:00|       True|       False
NIC|2009-01-19 00:00:00|      False|       False
NIC|2009-01-20 00:00:00|      False|       False
------+-------------------+-----------+------------

expectede Output

 +---------++-------------------+-------------------+

|AWBOrigin||      AWBPickupDate|       DeliveryDate| Holidays

+---------++-------------------+-------------------+

|      LON||2018-09-01 08:52:00|2018-09-12 13:57:00|  NA
|      DHA||2018-09-04 11:47:00|2018-09-08 07:30:00|  NA
|      NIC||2009-01-01 01:47:00|2009-01-09 11:37:00|  2
+---------+-----------+-----------------------------

Upvotes: 0

Views: 10697

Answers (1)

Ged
Ged

Reputation: 18108

I did this with SCALA so you will need to convert but in a far easier way I think. I added a key and did at key level, you can adapt and aggr that out. But principle is far simpler. No correlated sub queries required. Just relational calculus. Used number for dates, etc.

// SCALA 
// Slightly ambiguous on hols vs. weekend, as you stated treated as 1

import spark.implicits._ 
import org.apache.spark.sql.functions._

val dfE = Seq( 
              ("NIC", 1, false, false),
              ("NIC", 2, false, false),
              ("NIC", 3, true, false),
              ("NIC", 4, true, true),
              ("NIC", 5, false, false),
              ("NIC", 6, false, false),
              ("XYZ", 1, false, true)
              ).toDF("e","d","w", "h")
 //dfE.show(false)

 val dfE2 = dfE.withColumn("wh", when ($"w" or $"h", 1) otherwise (0)).drop("w").drop("h")
 //dfE2.show()

//Assuming more dfD's can exist
val dfD = Seq( 
              ("NIC", 1, 4, "k1"),
              ("NIC", 2, 3, "k2"),
              ("NIC", 1, 1, "k3"),
              ("NIC", 7, 10, "k4")
              ).toDF("e","pd","dd", "k")
//dfD.show(false)

dfE2.createOrReplaceTempView("E2")
dfD.createOrReplaceTempView("D1")

// This done per record, if over identical keys, then strip k and aggr otherwise, I added k for checking each entry
// Point is it is far easier. Key means synthetic grouping by.

val q=sqlContext.sql(""" SELECT d1.k, d1.e, d1.pd, d1.dd, sum(e2.wh) 
                       FROM D1, E2
                      WHERE D1.e = E2.e 
                        AND E2.d >= D1.pd
                        AND E2.d <= D1.dd
                    GROUP BY d1.k, d1.e, d1.pd, d1.dd   
                    ORDER BY d1.k, d1.e, d1.pd, d1.dd
                     """)
q.show

returns:

 +---+---+---+---+-------+
 |  k|  e| pd| dd|sum(wh)|
 +---+---+---+---+-------+
 | k1|NIC|  1|  4|      2|
 | k2|NIC|  2|  3|      1|
 | k3|NIC|  1|  1|      0|
 +---+---+---+---+-------+

I think a simple performance improvement can be made. No correlated stuff req'd in fact.

Can use AND E2.d BETWEEN D1.pd AND D1.dd if you want.

Upvotes: 1

Related Questions