Reputation: 45
My main_csv.csv file looks like
Client_ID Frequency
123AASD45 10
2345OPU78 9
763LKJ90 2
Here my frequency is the number of dates like if the frequency is 10 that client has to be met 10 times within my 1st quarter working days(Jan 2018-Mar 2018) my desired output should be like
Client_ID Dates_Reached
123AASD45 01/05/2018 /* random dates */
123AASD45 01/08/2018
...............
should I use loop or any other better way this can be done? I tried like below
df=read_csv('main_csv.csv',delimiter='|')
for rows in df:
i=0
#generate random date
i=i+1
if (i==df['Frequency']):
break
Upvotes: 1
Views: 303
Reputation: 7410
First you define a function date_range that takes the start date and end dates and the size of the sample and returns a sample.
import pandas as pd
df = pd.DataFrame({'client':['123AASD45', '2345OPU78', '763LKJ90'], 'frequency':[10,9,2]})
def date_range(n, start='1/1/2011', end='4/1/2011'):
date_range = pd.date_range(start, end)
return list(pd.Series(date_range).sample(n))
Then for each client you assign the sample of dates and do some data reshape to so you can join with the original table.
df['dates'] = df['frequency'].apply(lambda x: date_range(x))
df_dates = df['dates'].apply(pd.Series).reset_index()
df_dates = df_dates.melt(id_vars='index').dropna().drop(['variable'], axis=1).set_index('index')
Finally you join on the original dataset assuming there is one row per client.
df.join(df_dates)
Upvotes: 1