tajihiro
tajihiro

Reputation: 2443

Extract data containing a specific character with Pandas

I would like to extract data containing a specific character string in another column.

For example, The target extracted is like "another column string + 3 digits" character.
It has error. I would like to get TARGET row.

df = pd.DataFrame({'col1':['xxxx', 'yyyy', 'zzzz'],'col2':['xxxx123','yyyy1234','aaa123']})

col1 | col2
xxxx | xxxx123 <- TARGET 
yyyy | yyyy1234  <- Not TARGET
zzzz | aaaa123  <- Not TARGET

This is my code which does not work.

print(df[df['col1'].str.match(df['col2'] + [0-9][0-9][0-9])])

I had tried str.contains and str.match and isin. Probably I don't figure out how to use them.

Please let me know how to do it.

Upvotes: 2

Views: 477

Answers (3)

jpp
jpp

Reputation: 164683

You can filter by the intersection of two Boolean masks:

n = 3  # number of digits
mask1 = pd.to_numeric(df['col2'].str[-n:], errors='coerce').notnull()
mask2 = [col2[:-n] == col1 for col1, col2 in zip(df['col1'], df['col2'])]

df_slice = df[mask1 & mask2]

print(df_slice)

   col1     col2
0  xxxx  xxxx123

Performance benchmarking

You will likely find regex expensive versus regular str operations. Currently, Pandas str methods are also efficient.

df = pd.DataFrame({'col1':['xxxx', 'yyyy', 'zzzz'],'col2':['xxxx123','yyyy1234','aaa123']})

def vai(df):
    cond1 = df.col2.str.extract('([A-Za-z]+)\d', expand = False).eq(df.col1)
    cond2 = df.col2.str.extract('[A-Za-z](\d{3})$', expand = False)
    return cond1 & cond2

def jpp(df):
    n = 3  # number of digits
    mask1 = pd.to_numeric(df['col2'].str[-n:], errors='coerce').notnull()
    mask2 = [col2[:-n] == col1 for col1, col2 in zip(df['col1'], df['col2'])]
    return mask1 & mask2


def jpp2(df):
    n = 3  # number of digits
    mask1 = pd.to_numeric(df['col2'].str[-n:], errors='coerce').notnull()
    mask2 = df['col2'].str[:-n] == df['col1']
    return mask1 & mask2

df = pd.concat([df]*1000)

assert vai(df).equals(jpp(df)) and vai(df).equals(jpp2(df))

%timeit vai(df)   # 17.3 ms per loop
%timeit jpp(df)   # 5.4 ms per loop
%timeit jpp2(df)  # 8.01 ms per loop

Upvotes: 1

Vaishali
Vaishali

Reputation: 38415

Two pattern matches, and filter the dataframe

cond1 = df.col2.str.extract('([A-Za-z]+)\d', expand = False).eq(df.col1)
cond2 = df.col2.str.extract('[A-Za-z](\d{3})$', expand = False)

df[(cond1) & (cond2)]

    col1    col2
0   xxxx    [email protected]

Upvotes: 3

Ronie Martinez
Ronie Martinez

Reputation: 1266

You can write a function that performs string matching or uses regular expressions and pass it to apply() method.

Upvotes: 0

Related Questions