Reputation: 839
I'm writing a function to find the percentage change using Numpy and function calls. So far what I got is:
def change(a,b):
answer = (np.subtract(a[b+1], a[b])) / a[b+1] * 100
return answer
print(change(a,0))
"a" is the array I have made and b will be the index/numbers I am trying to calculate.
For example:
My Array is
[[1,2,3,5,7]
[1,4,5,6,7]
[5,8,9,10,32]
[3,5,6,13,11]]
How would I calculate the percentage change between 1 to 2 (=0.5) or 1 to 4(=0.75) or 5,7 etc..
Note: I know how mathematically to get the change, I'm not sure how to do this in python/ numpy.
Upvotes: 5
Views: 43903
Reputation: 1
Combine all your arrays.
Then make a data frame from them.
df = pd.df(data=array you made)
Use the pct_change()
function on dataframe. It will calculate the % change for all rows in dataframe.
Upvotes: 0
Reputation: 4865
I suggest to simply shift the array. The computation basically becomes a one-liner.
import numpy as np
arr = np.array(
[
[1, 2, 3, 5, 7],
[1, 4, 5, 6, 7],
[5, 8, 9, 10, 32],
[3, 5, 6, 13, 11],
]
)
# Percentage change from row to row
pct_chg_row = arr[1:] / arr[:-1] - 1
[[ 0. 1. 0.66666667 0.2 0. ]
[ 4. 1. 0.8 0.66666667 3.57142857]
[-0.4 -0.375 -0.33333333 0.3 -0.65625 ]]
# Percentage change from column to column
pct_chg_col = arr[:, 1::] / arr[:, 0:-1] - 1
[[ 1. 0.5 0.66666667 0.4 ]
[ 3. 0.25 0.2 0.16666667]
[ 0.6 0.125 0.11111111 2.2 ]
[ 0.66666667 0.2 1.16666667 -0.15384615]]
You could easily generalize the task, so that you are not limited to compute the change from one row/column to another, but be able to compute the change for n
rows/columns.
n = 2
pct_chg_row_generalized = arr[n:] / arr[:-n] - 1
[[4. 3. 2. 1. 3.57142857]
[2. 0.25 0.2 1.16666667 0.57142857]]
pct_chg_col_generalized = arr[:, n:] / arr[:, :-n] - 1
[[2. 1.5 1.33333333]
[4. 0.5 0.4 ]
[0.8 0.25 2.55555556]
[1. 1.6 0.83333333]]
If the output array must have the same shape as the input array, you need to make sure to insert the appropriate number of np.nan
.
out_row = np.full_like(arr, np.nan, dtype=float)
out_row[n:] = arr[n:] / arr[:-n] - 1
[[ nan nan nan nan nan]
[ nan nan nan nan nan]
[4. 3. 2. 1. 3.57142857]
[2. 0.25 0.2 1.16666667 0.57142857]]
out_col = np.full_like(arr, np.nan, dtype=float)
out_col[:, n:] = arr[:, n:] / arr[:, :-n] - 1
[[ nan nan 2. 1.5 1.33333333]
[ nan nan 4. 0.5 0.4 ]
[ nan nan 0.8 0.25 2.55555556]
[ nan nan 1. 1.6 0.83333333]]
Finally, a small function for the general 2D case might look like this:
def np_pct_chg(arr: np.ndarray, n: int = 1, axis: int = 0) -> np.ndarray:
out = np.full_like(arr, np.nan, dtype=float)
if axis == 0:
out[n:] = arr[n:] / arr[:-n] - 1
elif axis == 1:
out[:, n:] = arr[:, n:] / arr[:, :-n] - 1
return out
Upvotes: 2
Reputation: 39
The accepted answer is close but incorrect if you're trying to take % difference from left to right. You should get the following percent difference:
1,2,3,5,7
--> 100%, 50%, 66.66%, 40%
check for yourself: https://www.calculatorsoup.com/calculators/algebra/percent-change-calculator.php
Going by what Josmoor98 said, you can use np.diff(a) / a[:,:-1] * 100
to get the percent difference from left to right, which will give you the correct answer.
array([[100. , 50. , 66.66666667, 40. ],
[300. , 25. , 20. , 16.66666667],
[ 60. , 12.5 , 11.11111111, 220. ],
[ 66.66666667, 20. , 116.66666667, -15.38461538]])
Upvotes: 1
Reputation: 15578
I know you have asked this question with Numpy in mind and got answers above:
import numpy as np
np.diff(a) / a[:,1:]
I attempt to solve this with Pandas. For those who would have the same question but using Pandas instead of Numpy
import pandas as pd
data = [[1,2,3,4,5],
[1,4,5,6,7],
[5,8,9,10,32],
[3,5,6,13,11]]
df = pd.DataFrame(data)
df_change = df.rolling(1,axis=1).sum().pct_change(axis=1)
print(df_change)
Upvotes: 4
Reputation: 869
import numpy as np
a = np.array([[1,2,3,5,7],
[1,4,5,6,7],
[5,8,9,10,32],
[3,5,6,13,11]])
np.array([(i[:-1]/i[1:]) for i in a])
Upvotes: 0
Reputation: 51365
If I understand correctly, that you're trying to find percent change in each row, then you can do:
>>> np.diff(a) / a[:,1:] * 100
Which gives you:
array([[ 50. , 33.33333333, 40. , 28.57142857],
[ 75. , 20. , 16.66666667, 14.28571429],
[ 37.5 , 11.11111111, 10. , 68.75 ],
[ 40. , 16.66666667, 53.84615385, -18.18181818]])
Upvotes: 15