Reputation: 185
dft = pd.DataFrame(randn(100000,1), columns=['A'],
index=pd.date_range('20130101',periods=100000,freq='T'))
As you can see, I initialize a Dateframe from '2013-01-01' to ‘2013-03-11’ with 10 min interval. How can I select specific data from specific conditions?
1) Date in a list eg: If there is a list ['2013-01-02', '2013-01-04', '2013-01-06'] How can I select the data on this list date? Or how can I select the data that are not on this list date? More specifically, '2013-01-02' means all the data from '2013-01-02 00:00:00' to '2013-01-02 23:50:00'.
2) multiple slices choose eg: I wish I can select the data in multiple slices like the following: ['2013-01-02':'2013-01-03'] & ['2013-01-05':'2013-01-07'] & ['2013-01-09':'2013-01-11'] More specifically, this slice should be same as python slice which means including left but not including right.
Upvotes: 2
Views: 560
Reputation: 12406
Assuming this is the raw data (with a Datetime
index)
dft = pd.DataFrame(np.random.randn(100000,1), columns=['A'],
index=pd.date_range('20130101',periods=100000,freq='T'))
dft.head()
A
2013-01-01 00:00:00 0.313644
2013-01-01 00:01:00 0.458860
2013-01-01 00:02:00 0.841434
2013-01-01 00:03:00 -0.135846
2013-01-01 00:04:00 -0.881316
For 1), just use .isin()
myDates = ['2013-01-02', '2013-01-04', '2013-01-06']
# to get data in list
df_in = dft[pd.to_datetime(dft.index.date).isin(myDates)]
df_in.head()
A
2013-01-02 00:00:00 0.444005
2013-01-02 00:01:00 -0.073561
2013-01-02 00:02:00 0.256737
2013-01-02 00:03:00 1.304807
2013-01-02 00:04:00 -0.741956
# to get data not in list
df_not_in = dft[~pd.to_datetime(dft.index.date).isin(myDates)]
df_not_in_list.head()
A
2013-01-01 00:00:00 -0.944070
2013-01-01 00:01:00 0.225456
2013-01-01 00:02:00 0.571424
2013-01-01 00:03:00 -0.004389
2013-01-01 00:04:00 0.933229
For 2), if I understand correctly, you want to select the data using multiple datetime slices. To do this, you can use multiple index masks, from a nested list, to filter by date
myDates = [['2013-01-02','2013-01-03'],
['2013-01-05','2013-01-07'],
['2013-01-09','2013-01-11']]
df_masked = dft[
(dft.index >= myDates[0][0]) & (dft.index <= myDates[0][1]) & \
(dft.index >= myDates[1][0]) & (dft.index <= myDates[1][1]) & \
(dft.index >= myDates[2][0]) & (dft.index <= myDates[2][1])
]
Upvotes: 3