Reputation: 11
I have three 1080TI, but when train I can only use 2 of them..
Code:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.cuda()
criterion = nn.CrossEntropyLoss().cuda()
optimizer_conv = optim.SGD(model.classifier.parameters(), lr=0.0001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
train part:
outputs = nn.parallel.data_parallel(model,inputs,device_ids=[0,1,2])
With "CUDA_VISIBLE_DEVICES="1,2,3" python train.py" Got this:
| 22% 35C P8 10W / 250W | 12MiB / 11178MiB | 0%
| 43% 59C P2 92W / 250W | 1169MiB / 11178MiB | 49%
| 44% 60C P2 91W / 250W | 1045MiB / 11175MiB | 54%
With "CUDA_VISIBLE_DEVICES="0,1,2" python train.py" Got this:
| 21% 38C P2 95W / 250W | 1169MiB / 11178MiB | 78% Default |
| 42% 63C P2 93W / 250W | 777MiB / 11178MiB | 76% Default |
| 43% 64C P0 85W / 250W | 282MiB / 11175MiB | 0% Default |
Upvotes: 0
Views: 897
Reputation: 11
eeeee.. I found the reason:
my batchsize = 4 when there are three GPUs
so Change batchsize bigger can solve this "weird" problem
Upvotes: 1