Reputation: 826
My code is structured as follows:
with tf.device('/gpu:1'):
...
model = get_model(input_pl)
...
with tf.Session() as sess:
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
...
for n in range(num_batches):
...
sess.run(...)
# eval epoch
saver.save(sess, ...)
I want to save the model after the training phase. When I run it gives me this error:
InvalidArgumentError (see above for traceback): Cannot assign a device for operation 'save/SaveV2': Could not satisfy explicit device specification '/device:GPU:1' because no supported kernel for GPU devices is available.
Reading this question I changed the code in this way:
saver = tf.train.Saver()
with tf.device('/gpu:1'):
...
model = get_model(pointcloud_pl)
...
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
...
for n in range(num_batches):
...
sess.run(...)
# eval epoch
saver.save(sess, ...)
But now I get this error:
ValueError: No variables to save
I've tried also to do this way:
with tf.Session() as sess:
saver = tf.train.Saver()
...
with tf.device('/gpu:1'):
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
...
for n in range(num_batches):
...
sess.run()
# eval epoch
saver.save(sess, ...)
And I still get the same error. The error is always in the saver = tf.train.Saver()
line.
How can I solve this problem?
Upvotes: 3
Views: 498
Reputation: 826
Solved doing this:
tf.Session()
saver = tf.train.Saver()
with tf.device():
Here an example code
with tf.Session() as sess:
...
model = get_model(input_pl)
saver = tf.train.Saver()
...
with tf.device('/gpu:1'):
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
...
for n in range(num_batches):
...
sess.run()
# eval epoch
saver.save(sess, ...)
Upvotes: 1