Reputation: 1591
I have a pandas dataframe with the following general format:
id,atr1,atr2,orig_date,fix_date
1,bolt,l,2000-01-01,nan
1,screw,l,2000-01-01,nan
1,stem,l,2000-01-01,nan
2,stem,l,2000-01-01,nan
2,screw,l,2000-01-01,nan
2,stem,l,2001-01-01,2001-01-01
3,bolt,r,2000-01-01,nan
3,stem,r,2000-01-01,nan
3,bolt,r,2001-01-01,2001-01-01
3,stem,r,2001-01-01,2001-01-01
This result would be the following:
id,atr1,atr2,orig_date,fix_date,failed_part_ind
1,bolt,l,2000-01-01,nan,0
1,screw,l,2000-01-01,nan,0
1,stem,l,2000-01-01,nan,0
2,stem,l,2000-01-01,nan,1
2,screw,l,2000-01-01,nan,0
2,stem,l,2001-01-01,2001-01-01,0
3,bolt,r,2000-01-01,nan,1
3,stem,r,2000-01-01,nan,1
3,bolt,r,2001-01-01,2001-01-01,0
3,stem,r,2001-01-01,2001-01-01,0
Any tips or tricks most welcome!
Update2:
A better way to describe what I need to accomplish is that in a .groupby(['id','atr1','atr2'])
to create a new indicator column where the following criteria are met for records within the groups:
(df['orig_date'] < df['fix_date'])
Upvotes: 0
Views: 1661
Reputation: 872
I think this should work:
df['failed_part_ind'] = df.apply(lambda row: 1 if ((row['id'] == row['id']) &
(row['atr1'] == row['atr1']) &
(row['atr2'] == row['atr2']) &
(row['orig_date'] < row['fix_date']))
else 0, axis=1)
Update: I think this is what you want:
import numpy as np
def f(g):
min_fix_date = g['fix_date'].min()
if np.isnan(min_fix_date):
g['failed_part_ind'] = 0
else:
g['failed_part_ind'] = g['orig_date'].apply(lambda d: 1 if d < min_fix_date else 0)
return g
df.groupby(['id', 'atr1', 'atr2']).apply(lambda g: f(g))
Upvotes: 1