Reputation: 2495
Say I have a df consisting of 3 columns ['Y/N','Test Before','Test After'], where 'Y/N' is boolean and 'Test Before,' 'Test After' is float.
eg,
'Y/N' 'Test Before' 'Test After'
True 75 100
False 75 50
True 50 60
False 50 40
...
I can use df.boxplot(column='Test Before/Test After', by 'Y/N')
to create separate boxplots of 'column name' each grouped by 'Y/N.'
However, I would like to create separate boxplots of boolean 'Y/N,' grouped by 'Test Before,' 'Test After,' eg:
Boxplot A contains boxplots of df['Y/N'] == True for x values df['Test Before'] and df['Test After'].
Boxplot B contains boxplots of df['Y/N'] == False for x values df['Test Before'] and df['Test After'].
Upvotes: 0
Views: 2403
Reputation: 107747
While your desired result is a bit unclear, consider melting your data before plotting to have one indicator column for Test Stage and one value column for Test Value. Then plot with seaborn's boxplot with Y/N as the legend (hue) series or with seaborn's FacetGrid with separate graphs for each Y/N distinct value. Below runs on seeded, random data for demonstration:
Data
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(11012018)
df = pd.DataFrame({'Y/N': np.random.choice([True, False], 50),
'Test Before': [np.random.uniform()*10 for _ in range(50)],
'Test After': [np.random.uniform()*10 for _ in range(50)]},
columns = ['Y/N', 'Test Before', 'Test After'])
# MELT DATA (WIDE TO LONG)
melt_df = df.melt(id_vars="Y/N", value_name="Test_Value", var_name="Test_Stage")
print(melt_df.head())
# Y/N Test_Stage Test_Value
# 0 False Test Before 7.573898
# 1 True Test Before 3.487735
# 2 False Test Before 1.506599
# 3 False Test Before 9.833866
# 4 True Test Before 1.340375
# 5 False Test Before 3.678094
# 6 True Test Before 3.407419
# 7 False Test Before 0.427210
# 8 False Test Before 6.988953
# 9 False Test Before 2.912770
Plot
fig, ax = plt.subplots(figsize=(10,4))
sns.boxplot(data=melt_df, x='Test_Stage', y='Test_Value', hue='Y/N', ax=ax)
plt.legend(loc='upper right')
g = sns.FacetGrid(melt_df, col="Y/N", height=4, aspect=6/4)
g.map(sns.boxplot, data=melt_df, x='Test_Stage', y='Test_Value')
Additional Data
Should there be more than just Test_Before and Test_After values, melt
scales to it with order specifying box plots arrangement:
np.random.seed(11012018)
df['Test Middle'] = [np.random.uniform()*10 for _ in range(50)]
melt_df = df.melt(id_vars="Y/N", value_name="Test_Value", var_name="Test_Stage")
fig, ax = plt.subplots(figsize=(10,4))
sns.boxplot(data=melt_df, x='Test_Stage', y='Test_Value', hue='Y/N', ax=ax,
order=['Test Before', 'Test Middle', 'Test After'])
g = sns.FacetGrid(melt_df, col="Y/N", height=4, aspect=6/4)
g.map(sns.boxplot, data=melt_df, x='Test_Stage', y='Test_Value',
order=['Test Before', 'Test Middle', 'Test After'])
Upvotes: 1