Reputation: 717
I want to compute cumulative sum for the first (n-1) columns
(if we have n
columns matrix) and subsequently average the values. I created a sample matrix to do this task. I have the following matrix
ma = matrix(c(1:10), nrow = 2, ncol = 5)
ma
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
I wanted to find the following
ans = matrix(c(1,2,2,3,3,4,4,5), nrow = 2, ncol = 4)
ans
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 3 4 5
The following are my r
function.
ColCumSumsAve <- function(y){
for(i in seq_len(dim(y)[2]-1)) {
y[,i] <- cumsum(y[,i])/i
}
}
ColCumSumsAve(ma)
However, when I run the above function its not producing any output. Are there any mistakes in the code?
Thanks.
Upvotes: 1
Views: 346
Reputation: 9865
There were several mistakes.
Solution
This is what I tested and what works:
colCumSumAve <- function(m) {
csum <- t(apply(X=m, MARGIN=1, FUN=cumsum))
res <- t(Reduce(`/`, list(t(csum), 1:ncol(m))))
res[, 1:(ncol(m)-1)]
}
Test it with:
> colCumSumAve(ma)
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 3 4 5
which is correct.
Explanation:
colCumSumAve <- function(m) {
csum <- t(apply(X=m, MARGIN=1, FUN=cumsum)) # calculate row-wise colsum
res <- t(Reduce(`/`, list(t(csum), 1:ncol(m))))
# This is the trickiest part.
# Because `csum` is a matrix, the matrix will be treated like a vector
# when `Reduce`-ing using `/` with a vector `1:ncol(m)`.
# To get quasi-row-wise treatment, I change orientation
# of the matrix by `t()`.
# However, the output, the output will be in this transformed
# orientation as a consequence. So I re-transform by applying `t()`
# on the entire result at the end - to get again the original
# input matrix orientation.
# `Reduce` using `/` here by sequencial list of the `t(csum)` and
# `1:ncol(m)` finally, has as effect `/`-ing `csum` values by their
# corresponding column position.
res[, 1:(ncol(m)-1)] # removes last column for the answer.
# this, of course could be done right at the beginning,
# saving calculation of values in the last column,
# but this calculation actually is not the speed-limiting or speed-down-slowing step
# of these calculations (since this is sth vectorized)
# rather the `apply` and `Reduce` will be rather speed-limiting.
}
Well, okay, I could do then:
colCumSumAve <- function(m) {
csum <- t(apply(X=m[, 1:(ncol(m)-1)], MARGIN=1, FUN=cumsum))
t(Reduce(`/`, list(t(csum), 1:ncol(m))))
}
or:
colCumSumAve <- function(m) {
m <- m[, 1:(ncol(m)-1)] # remove last column
csum <- t(apply(X=m, MARGIN=1, FUN=cumsum))
t(Reduce(`/`, list(t(csum), 1:ncol(m))))
}
This is actually the more optimized solution, then.
Original Function
Your original function makes only assignments in the for
-loop and doesn't return anything.
So I copied first your input into a res
, processed it with your for
-loop and then returned res
.
ColCumSumsAve <- function(y){
res <- y
for(i in seq_len(dim(y)[2]-1)) {
res[,i] <- cumsum(y[,i])/i
}
res
}
However, this gives:
> ColCumSumsAve(ma)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1.5 1.666667 1.75 9
[2,] 3 3.5 3.666667 3.75 10
The problem is that the cumsum
in matrices is calculated in column-direction instead row-wise, since it treats the matrix like a vector (which goes columnwise through the matrix).
Corrected Original Function
After some frickeling, I realized, the correct solution is:
ColCumSumsAve <- function(y){
res <- matrix(NA, nrow(y), ncol(y)-1)
# create empty matrix with the dimensions of y minus last column
for (i in 1:(nrow(y))) { # go through rows
for (j in 1:(ncol(y)-1)) { # go through columns
res[i, j] <- sum(y[i, 1:j])/j # for each position do this
}
}
res # return `res`ult by calling it at the end!
}
with the testing:
> ColCumSumsAve(ma)
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 3 4 5
Note: dim(y)[2]
is ncol(y)
- and dim(y)[1]
is nrow(y)
-
and instead seq_len()
, 1:
is shorter and I guess even slightly faster.
Note: My solution given first will be faster, since it uses apply
, vectorized cumsum
and Reduce
. - for
-loops in R are slower.
Late Note: Not so sure that the first solution is faster. Since R-3.x it seems that for
loops are faster. Reduce
will be the speed limiting funtion and can be sometimes incredibly slow.
Upvotes: 3
Reputation: 2188
Here's how I did it
> t(apply(ma, 1, function(x) cumsum(x) / 1:length(x)))[,-NCOL(ma)]
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 3 4 5
This applies the cumsum
function row-wise to the matrix ma
and then divides by the correct length to get the average (cumsum(x)
and 1:length(x)
will have the same length). Then simply transpose with t
and remove the last column with [,-NCOL(ma)]
.
The reason why there is no output from your function is because you aren't returning anything. You should end the function with return(y)
or simply y
as Marius suggested. Regardless, your function doesn't seem to give you the correct response anyway.
Upvotes: 1
Reputation: 2986
All you need is rowMeans
:
nc <- 4
cbind(ma[,1],sapply(2:nc,function(x) rowMeans(ma[,1:x])))
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 3 4 5
Upvotes: 2
Reputation: 81
k <- t(apply(ma,1,cumsum))[,-ncol(k)]
for (i in 1:ncol(k)){
k[,i] <- k[,i]/i
}
k
This should work.
Upvotes: 2