Reputation: 572
Consider I have data like this:
df<-data.frame(x=c(1100,800,600,550,500,350),y=c(0.05,0.17,0.91,0.95,1,0.13))
how can I fit a curve through it based on a log normal shape/distribution
I can use a nls model but get an error always:
fit <-nls(y ~ a*dlnorm(x, mean, sd), data = df,
start = list(mean =0, sd = 10,a=1e4))
Thanks a lot!
Upvotes: 2
Views: 1647
Reputation: 48241
I'm not sure why nls
behaves like that, but you may directly use optim
:
opt <- optim(c(1, 1, 1), function(p) sum((dlnorm(df$x, p[1], p[2]) * p[3] - df$y)^2))
opt$par
# [1] 6.3280753 0.2150322 299.3154123
plot(x = df$x, y = df$y, type = 'b', ylim = c(0, 1), xlim = c(0, 1100))
curve(opt$par[3] * dlnorm(x, opt$par[1], opt$par[2]), from = 0, to = 1100, add = TRUE, col = 'red')
Upvotes: 3