Reputation: 1669
I want to create three new variables (call them one
, two
, and three
) using the same generalized mutate
but with a different existing variable used inside the mutate
. To do this I want to write a short code block which accomplishes the same thing as the following (verbose) code:
mtcars.modified <- mtcars %>%
mutate(one = factor(case_when(
mpg < 10 ~ "lt10",
mpg >= 10 & mpg <= 20 ~ "10to20",
mpg > 20 ~ "gt20"),
ordered=T, levels = c("lt10", "10to20", "gt20"))) %>%
mutate(two = factor(case_when(
disp < 10 ~ "lt10",
disp >= 10 & disp <= 20 ~ "10to20",
disp > 20 ~ "gt20"),
ordered=T, levels = c("lt10", "10to20", "gt20"))) %>%
mutate(three = factor(case_when(
qsec < 10 ~ "lt10",
qsec >= 10 & qsec <= 20 ~ "10to20",
qsec > 20 ~ "gt20"),
ordered =T, levels = c("lt10", "10to20", "gt20")))
One way I can generalize this is by using mutate_at
's suffixing behavior, and then renaming afterward:
mtcars.modified <- mtcars %>%
mutate_at(c("mpg", "disp", "qsec"),
funs(mod = factor(case_when(
. < 10 ~ "lt10",
. >= 10 & . <= 20 ~ "10to20",
. > 20 ~ "gt20"),
ordered =T, levels = c("lt10", "10to20", "gt20")))) %>%
rename(one = mpg_mod,
two = disp_mod,
three = qsec_mod)
This feels like a workaround, though. Is there a way I can do this without needing to rename
afterward? I wondered if I could give one
, two
, and three
as the .vars
and then somehow pass the second set of variables into the case_when
. It feels analogous to a map2
problem where you have two corresponding vectors and a function which takes items from both vectors in pairs.
This was my (failed) attempt to try to use map2
inside the funs
argument:
mtcars.modified <- mtcars %>%
mutate_at(c("one", "two", "three"),
funs(map2(.x = ., .y = c(mpg, disp, qsec),
~ factor(case_when(
.y < 10 ~ "lt10",
.y >= 10 & .y <= 20 ~ "10to20",
.y > 20 ~ "gt20"),
ordered =T, levels = c("lt10", "10to20", "gt20")))))
I'd like to keep everything inside a mtcars %>%
pipe without creating a named function or breaking the pipe.
Upvotes: 1
Views: 1398
Reputation: 3473
If you use the dplyr::vars
function you can rename before applying your function.
mtcars %>%
mutate_at(
vars(one = mpg, two = disp, three = qsec),
funs(
case_when(
. < 10 ~ 'lt10',
. >= 10 & . <= 20 ~ "10to20",
. > 20 ~ 'gt20'
) %>%
ordered(levels = c('lt10', '10to20', 'gt20'))
)
)
This also works with @seisdrum's great suggestion to use base::cut
mtcars %>%
mutate_at(
vars(one = mpg, two = disp, three = qsec),
cut,
breaks = c(-Inf, 10, 20, Inf),
labels = c("lt10", "10to20", "gt20")
)
Upvotes: 1
Reputation: 497
library(tidyverse)
mtcars %>%
dplyr::mutate_at(c("mpg", "disp", "qsec"), cut,
breaks = c(-Inf, 10, 20, Inf),
labels = c("lt10", "10to20", "gt20")) %>%
head()
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 gt20 6 gt20 110 3.90 2.620 10to20 0 1 4 4
#> 2 gt20 6 gt20 110 3.90 2.875 10to20 0 1 4 4
#> 3 gt20 4 gt20 93 3.85 2.320 10to20 1 1 4 1
#> 4 gt20 6 gt20 110 3.08 3.215 10to20 1 0 3 1
#> 5 10to20 8 gt20 175 3.15 3.440 10to20 0 0 3 2
#> 6 10to20 6 gt20 105 2.76 3.460 gt20 1 0 3 1
You could use the cut function for this task. Does this do what you want?
If you want to keep the original columns and need the suffix _mod
in the modifed ones you can do this:
library(tidyverse)
mtcars %>%
dplyr::mutate_at(c("mpg", "disp", "qsec"),
dplyr::funs(
mod = cut(.,
breaks = c(-Inf, 10, 20, Inf),
labels = c("lt10", "10to20", "gt20")
)
)
) %>%
head()
#> mpg cyl disp hp drat wt qsec vs am gear carb mpg_mod disp_mod
#> 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 gt20 gt20
#> 2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 gt20 gt20
#> 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 gt20 gt20
#> 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 gt20 gt20
#> 5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 10to20 gt20
#> 6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 10to20 gt20
#> qsec_mod
#> 1 10to20
#> 2 10to20
#> 3 10to20
#> 4 10to20
#> 5 10to20
#> 6 gt20
Upvotes: 1