Reputation: 113
The most similar question I found was here but with no proper answer.
Basically I have an issue where I'm trying to use groupby on a dataframe to generate unique IDs for bus routes. The problem is, the data I have at my disposal sometimes (though rarely) has the same values for my groupby columns, so they're considered the same bus even though they aren't.
The only other way I can think of is to group buses based on another column called "Type of stop", where there is an indicator for Start, Middle and End. I'd like to use groupby to create groups based on this column where each group starts where "type of stop" = Start, and ends where "type of stop" = End.
Consider the following data:
df = pd.DataFrame({'Vehicle_ID': ['A']*18,
'Position': ['START', 'MID', 'MID', 'END', 'MID', 'START']*3)})
Cond Position
0 A START
1 A MID
2 A MID
3 A END
4 A MID
5 A START
6 A START
7 A MID
8 A MID
9 A END
10 A MID
11 A START
12 A START
13 A MID
14 A MID
15 A END
16 A MID
17 A START
The only way I came up with to accurately group these buses together is to generate an additional column with the bus sequence id, but given that I'm working with lots of data, this isn't a very efficient solution. I'm hoping to be able to manage what I want to do with a single groupby, if possible, in order to generate the following output
Cond Position Group
0 A START 1
1 A MID 1
2 A MID 1
3 A END 1
4 A MID
5 A START 2
6 A START 2
7 A MID 2
8 A MID 2
9 A END 2
10 A MID
11 A START 3
12 A START 3
13 A MID 3
14 A MID 3
15 A END 3
16 A MID
17 A START 4
Upvotes: 2
Views: 256
Reputation: 164613
One idea is to factorize via np.select
, then use a custom loop via numba
:
from numba import njit
df = pd.DataFrame({'Vehicle_ID': ['A']*18,
'Position': ['START', 'MID', 'MID', 'END', 'MID', 'START']*3})
@njit
def grouper(pos):
res = np.empty(pos.shape)
num = 1
started = 0
for i in range(len(res)):
current_pos = pos[i]
if (started == 0) and (current_pos == 0):
started = 1
res[i] = num
elif (started == 1) and (current_pos == 1):
started = 0
res[i] = num
num += 1
elif (started == 1) and (current_pos in [-1, 0]):
res[i] = num
else:
res[i] = 0
return res
arr = np.select([df['Position'].eq('START'), df['Position'].eq('END')], [0, 1], -1)
df['Group'] = grouper(arr).astype(int)
Result:
print(df)
Position Vehicle_ID Group
0 START A 1
1 MID A 1
2 MID A 1
3 END A 1
4 MID A 0
5 START A 2
6 START A 2
7 MID A 2
8 MID A 2
9 END A 2
10 MID A 0
11 START A 3
12 START A 3
13 MID A 3
14 MID A 3
15 END A 3
16 MID A 0
17 START A 4
In my opinion, you should not include "blank" values as this would force your series to be object
dtype, inefficient for any subsequent processing. As above, you can use 0
instead.
numba
is around ~10x faster than one pure Pandas approach:-
import pandas as pd, numpy as np
from numba import njit
df = pd.DataFrame({'Vehicle_ID': ['A']*18,
'Position': ['START', 'MID', 'MID', 'END', 'MID', 'START']*3})
df = pd.concat([df]*10, ignore_index=True)
assert joz(df.copy()).equals(jpp(df.copy()))
%timeit joz(df.copy()) # 18.6 ms per loop
%timeit jpp(df.copy()) # 1.95 ms per loop
Benchmarking functions:
def joz(df):
# identification of sequences
df['Position_Prev'] = df['Position'].shift(1)
df['Sequence'] = 0
df.loc[(df['Position'] == 'START') & (df['Position_Prev'] != 'START'), 'Sequence'] = 1
df.loc[df['Position'] == 'END', 'Sequence'] = -1
df['Sequence_Sum'] = df['Sequence'].cumsum()
df.loc[df['Sequence'] == -1, 'Sequence_Sum'] = 1
# take only items between START and END and generate Group number
df2 = df[df['Sequence_Sum'] == 1].copy()
df2.loc[df['Sequence'] == -1, 'Sequence'] = 0
df2['Group'] = df2['Sequence'].cumsum()
# merge results to one dataframe
df = df.merge(df2[['Group']], left_index=True, right_index=True, how='left')
df['Group'] = df['Group'].fillna(0)
df['Group'] = df['Group'].astype(int)
df.drop(['Position_Prev', 'Sequence', 'Sequence_Sum'], axis=1, inplace=True)
return df
@njit
def grouper(pos):
res = np.empty(pos.shape)
num = 1
started = 0
for i in range(len(res)):
current_pos = pos[i]
if (started == 0) and (current_pos == 0):
started = 1
res[i] = num
elif (started == 1) and (current_pos == 1):
started = 0
res[i] = num
num += 1
elif (started == 1) and (current_pos in [-1, 0]):
res[i] = num
else:
res[i] = 0
return res
def jpp(df):
arr = np.select([df['Position'].eq('START'), df['Position'].eq('END')], [0, 1], -1)
df['Group'] = grouper(arr).astype(int)
return df
Upvotes: 1
Reputation: 3592
I have some solution. You have to avoid loops and try to using sliding, slicing and merging.
This is my first prototype (should be refactored)
# identification of sequences
df['Position_Prev'] = df['Position'].shift(1)
df['Sequence'] = 0
df.loc[(df['Position'] == 'START') & (df['Position_Prev'] != 'START'), 'Sequence'] = 1
df.loc[df['Position'] == 'END', 'Sequence'] = -1
df['Sequence_Sum'] = df['Sequence'].cumsum()
df.loc[df['Sequence'] == -1, 'Sequence_Sum'] = 1
# take only items between START and END and generate Group number
df2 = df[df['Sequence_Sum'] == 1].copy()
df2.loc[df['Sequence'] == -1, 'Sequence'] = 0
df2['Group'] = df2['Sequence'].cumsum()
# merge results to one dataframe
df = df.merge(df2[['Group']], left_index=True, right_index=True, how='left')
df['Group'] = df['Group'].fillna(0)
df['Group'] = df['Group'].astype(int)
df.drop(columns=['Position_Prev', 'Sequence', 'Sequence_Sum'], inplace=True)
df
Result:
Vehicle_ID Position Group
0 A START 1
1 A MID 1
2 A MID 1
3 A END 1
4 A MID 0
5 A START 2
6 A START 2
7 A MID 2
8 A MID 2
9 A END 2
10 A MID 0
11 A START 3
12 A START 3
13 A MID 3
14 A MID 3
15 A END 3
16 A MID 0
17 A START 4
Upvotes: 1