Reputation: 7832
I have a pivot table and I'd want to create another pivot table of the same format but that now it contains Year over Year percent change.
This is a simple example:
my_data = {
'date': [datetime.date(2000,1,7), datetime.date(2000,1,14),
datetime.date(2001,1,5), datetime.date(2001,1,12)],
'week_number': [1,2,1,2],
'quarter_number': [1,1,1,1],
'name': ['hi','bye','hi','bye'],
'category': ['clothing','electronics','clothing','electronics'],
'total sales': [123,456,180,350]
}
my_df = pd.DataFrame(my_data)
my_df.pivot_table(index=['date','week_number','quarter_number'], columns=['name', 'category'])
Resulting in following pivot table:
total sales
name bye hi
category electronics clothing
date week_number quarter_number
2000-01-07 1 1 NaN 123.0
2000-01-14 2 1 456.0 NaN
2001-01-05 1 1 NaN 180.0
2001-01-12 2 1 350.0 NaN
Now let us say I want to compute percent change Year over Year. The resulting pivot table would look like:
total sales pchg Y/Y
name bye hi
category electronics clothing
date week_number quarter_number
2000-01-07 1 1 NaN NaN
2000-01-14 2 1 NaN NaN
2001-01-05 1 1 NaN 0.463
2001-01-12 2 1 -0.23 NaN
Note that in the general case we have N names, many years of data and K categories.
I provide here a more general case too to show that pct_change does not work in default mode since it'd not do percent change Year over Year.
my_data = {
'date': [datetime.date(2000,1,7), datetime.date(2000,1,14),
datetime.date(2001,1,5), datetime.date(2001,1,12),
datetime.date(2000, 1, 7), datetime.date(2000, 1, 14),
datetime.date(2001, 1, 5), datetime.date(2001, 1, 12),
datetime.date(2000, 1, 7), datetime.date(2000, 1, 14),
datetime.date(2001, 1, 5), datetime.date(2001, 1, 12),
datetime.date(2000, 1, 7), datetime.date(2000, 1, 14),
datetime.date(2001, 1, 5), datetime.date(2001, 1, 12)],
'week_number': [1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2],
'quarter_number': [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
'name': ['hi','hi','hi','hi','hi','hi','hi','hi','bye','bye','bye','bye','bye','bye','bye','bye'],
'category': ['clothing','clothing','clothing','clothing','electronics','electronics','electronics','electronics',
'clothing', 'clothing', 'clothing', 'clothing', 'electronics', 'electronics', 'electronics','electronics'],
'total sales': [123,456,180,350,123,456,180,350,123,456,180,350,123,456,180,350]
}
my_df = pd.DataFrame(my_data)
my_df.pivot_table(index=['date','week_number','quarter_number'], columns=['name', 'category'])
my_df.pivot_table(index=['date','week_number','quarter_number'], columns=['name', 'category']).apply(pd.Series.pct_change)
total sales ...
name bye ... hi
category clothing ... electronics
date week_number quarter_number ...
2000-01-07 1 1 NaN ... NaN
2000-01-14 2 1 2.707317 ... 2.707317
2001-01-05 1 1 -0.605263 ... -0.605263
2001-01-12 2 1 0.944444 ... 0.944444
The pct_change is clearly wrong as it does not provide Y/Y changes but rather row i to row i+1.
Upvotes: 1
Views: 131
Reputation: 27889
You can achieve desired result with pct_change:
pivoted = pd.pivot_table(my_df, index=['date','week_number','quarter_number'], columns=['name', 'category'])
pivoted.groupby(level='week_number').transform(pd.Series.pct_change)
# total sales
#name bye hi
#category electronics clothing
#date week_number quarter_number
#2000-01-07 1 1 NaN NaN
#2000-01-14 2 1 NaN NaN
#2001-01-05 1 1 NaN 0.463415
#2001-01-12 2 1 -0.232456 NaN
Upvotes: 2