Reputation: 1389
In trying to make my way through Bayesian Methods for Hackers, which is in pymc, I came across this code:
first_coin_flips = pm.Bernoulli("first_flips", 0.5, size=N)
I've tried to translate this to pymc3 with the following, but it just returns a numpy array, rather than a tensor (?):
first_coin_flips = pm.Bernoulli("first_flips", 0.5).random(size=50)
The reason the size matters is that it's used later on in a deterministic variable. Here's the entirety of the code that I have so far:
import pymc3 as pm
import matplotlib.pyplot as plt
import numpy as np
import mpld3
import theano.tensor as tt
model = pm.Model()
with model:
N = 100
p = pm.Uniform("cheating_freq", 0, 1)
true_answers = pm.Bernoulli("truths", p)
print(true_answers)
first_coin_flips = pm.Bernoulli("first_flips", 0.5)
second_coin_flips = pm.Bernoulli("second_flips", 0.5)
# print(first_coin_flips.value)
# Create model variables
def calc_p(true_answers, first_coin_flips, second_coin_flips):
observed = first_coin_flips * true_answers + (1-first_coin_flips) * second_coin_flips
# NOTE: Where I think the size param matters, since we're dividing by it
return observed.sum() / float(N)
calced_p = pm.Deterministic("observed", calc_p(true_answers, first_coin_flips, second_coin_flips))
step = pm.Metropolis(model.free_RVs)
trace = pm.sample(1000, tune=500, step=step)
pm.traceplot(trace)
html = mpld3.fig_to_html(plt.gcf())
with open("output.html", 'w') as f:
f.write(html)
f.close()
And the output:
The coin flips and uniform cheating_freq
output look correct, but the observed
doesn't look like anything to me, and I think it's because I'm not translating that size
param correctly.
Upvotes: 3
Views: 596
Reputation: 1389
The pymc3 way to specify the size of a Bernoulli distribution is by using the shape
parameter, like:
first_coin_flips = pm.Bernoulli("first_flips", 0.5, shape=N)
Upvotes: 1