Reputation:
I'm trying to write a program that returns the Pell numbers sequence based on a given number.
For example (pellNumb 6)
should return a list (0 1 2 5 12 29 70)
This is my code so far. I am able of calculating the numbers, but I am not able of skipping the double recursion.
(defun base (n)
(if (= n 0)
0
(if (= n 1)
1)))
(defun pellNumb (n)
(if (or (= n 0) (= n 1))
(base n)
(let ((x (pellNumb (- n 2))))
(setq y (+ (* 2 (pellNumb (- n 1))) x))
(print y))))
The output for (pellNumb 4)
is 2 2 5 12
, and this is because i'm recursing to (pellNumb 2)
twice.
Is there a way to skip that, and store these values in a list ?
Thanks!
Upvotes: 3
Views: 177
Reputation: 60014
n
th numberYes, there is a way - use multiple values:
(defun pell-numbers (n)
"Return the n-th Pell number, n-1 number is returned as the 2nd value.
See https://oeis.org/A000129, https://en.wikipedia.org/wiki/Pell_number"
(check-type n (integer 0))
(cond ((= n 0) (values 0 0))
((= n 1) (values 1 0))
(t (multiple-value-bind (prev prev-1) (pell-numbers (1- n))
(values (+ (* 2 prev) prev-1)
prev)))))
(pell-numbers 10)
==> 2378 ; 985
This is a standard trick for recursive sequences which depend on several previous values, such as the Fibonacci.
Note that your double recursion means that (pell-numbers n)
has exponential(!) performance (computation requires O(2^n)
time), while my single recursion is linear (i.e., O(n)
).
Moreover, Fibonacci numbers have a convenient property which allows a logarithmic recursive implementation, i.e., taking O(log(n))
time.
n
in a listIf you need all numbers up to the n
th, you need a simple loop:
(defun pell-numbers-loop (n)
(loop repeat n
for cur = 1 then (+ (* 2 cur) prev)
and prev = 0 then cur
collect cur))
(pell-numbers-loop 10)
==> (1 2 5 12 29 70 169 408 985 2378)
If you insist on recursion:
(defun pell-numbers-recursive (n)
(labels ((pnr (n)
(cond ((= n 0) (list 0))
((= n 1) (list 1 0))
(t (let ((prev (pnr (1- n))))
(cons (+ (* 2 (first prev)) (second prev))
prev))))))
(nreverse (pnr n))))
(pell-numbers-recursive 10)
==> (0 1 2 5 12 29 70 169 408 985 2378)
Note that the recursion is non-tail, so the loop version is probably more efficient.
One can, of course, produce a tail recursive version:
(defun pell-numbers-tail (n)
(labels ((pnt (i prev)
(if (= i 0)
prev ; done
(pnt (1- i)
(cond ((null prev) (list 0)) ; n=0
((null (cdr prev)) (cons 1 prev)) ; n=1
(t
(cons (+ (* 2 (or (first prev) 1))
(or (second prev) 0))
prev)))))))
(nreverse (pnt (1+ n) ()))))
(pell-numbers-tail 10)
==> (0 1 2 5 12 29 70 169 408 985 2378)
Upvotes: 7