Reputation: 587
The following routine retrieves a data file.
wget.download("https://www.aaii.com/files/surveys/sentiment.xls", "C:/temp/sentiment.xls")
df = pd.read_excel("C:/temp/sentiment.xls", sheet_name = "SENTIMENT", skiprows=3, parse_dates=['Date'], date_format='%m-%d-%y', index_col ='Date')
The first three data lines are incomplete so I can slice them off like this df[3:]
At about line 1640 there is a blank line. I wish to skip the rest of the file after that line. I tried to find that line like so and get its index so I could do another slice, but I get nan for the index value.
df[df.isnull().all(1)].index.values[0]
How can I find that line and skip the rest of the file?
Upvotes: 0
Views: 92
Reputation: 10880
I think you have two nan
-row problems in this file:
first import the data as you did it:
df = pd.read_excel("sentiment.xls", sheet_name = "SENTIMENT", skiprows=3, parse_dates=['Date'], date_format='%m-%d-%y', index_col ='Date')
df.head()
Bullish Neutral Bearish ... High Low Close
Date ...
NaN NaN NaN NaN ... NaN NaN NaN
1987-06-26 00:00:00 NaN NaN NaN ... NaN NaN NaN
1987-07-17 00:00:00 NaN NaN NaN ... 314.59 307.63 314.59
1987-07-24 00:00:00 0.36 0.50 0.14 ... 311.39 307.81 309.27
1987-07-31 00:00:00 0.26 0.48 0.26 ... 318.66 310.65 318.66
then remove first empty row (nan
-index), problem No1:
df = df[1:]
df.head()
Bullish Neutral Bearish ... High Low Close
Date ...
1987-06-26 00:00:00 NaN NaN NaN ... NaN NaN NaN
1987-07-17 00:00:00 NaN NaN NaN ... 314.59 307.63 314.59
1987-07-24 00:00:00 0.36 0.50 0.14 ... 311.39 307.81 309.27
1987-07-31 00:00:00 0.26 0.48 0.26 ... 318.66 310.65 318.66
1987-08-07 00:00:00 0.56 0.15 0.29 ... 323.00 316.23 323.00
And now you want to index all rows before the first nan
-index, problem No2.
Idea: create a boolean array with True entries for all nan
- indices, cast to integer and build the cumulative sum. Now you have an array, which is 0 for all the data you want and >0 from any unwanted line on until the end.
This tested against 0
returns a boolean index for your data:
data_idx = df.index.isna().astype(int).cumsum() == 0
Applied to your dataframe:
df[data_idx]
Bullish Neutral ... Low Close
Date ...
1987-06-26 00:00:00 NaN NaN ... NaN NaN
1987-07-17 00:00:00 NaN NaN ... 307.63 314.59
1987-07-24 00:00:00 0.360000 0.500000 ... 307.81 309.27
1987-07-31 00:00:00 0.260000 0.480000 ... 310.65 318.66
1987-08-07 00:00:00 0.560000 0.150000 ... 316.23 323.00
... ... ... ... ...
2018-10-11 00:00:00 0.306061 0.339394 ... 2784.86 2785.68
2018-10-18 00:00:00 0.339350 0.310469 ... 2710.51 2809.21
2018-10-25 00:00:00 0.279693 0.310345 ... 2651.89 2656.10
2018-11-01 00:00:00 0.379310 0.275862 ... 2603.54 2711.74
2018-11-08 00:00:00 0.412844 0.275229 ... 2700.44 2813.89
[1635 rows x 12 columns]
Upvotes: 1