Reputation: 694
I am trying to fit a curve to this plot, but am having trouble.
Code:
library(ggplot2)
data <- data.frame(pressure = c(400, 200, 100, 50, 25, 12.5, 6.25, 3.125),
volume = c(.25, .5, 1, 2, 4, 8, 16, 32))
plot(data, ylim = c(min(data[,2]), max(data[,2])), xlim = c(min(data[,1]), max(data[,1])),
pch = 19, col = "firebrick")
lm_fit <- lm(data$pressure ~ poly(data$volume, 2, raw = TRUE))
lines(data$volume, predict (lm_fit, data.frame(x = data$volume)), col = "red")
Result:
Upvotes: 1
Views: 67
Reputation: 226057
Your main problem is using data$
inside your regression model: you should use just the names of the variables.
dd <- data.frame(pressure = c(400, 200, 100, 50, 25, 12.5, 6.25, 3.125),
volume = c(.25, .5, 1, 2, 4, 8, 16, 32))
lm_fit <- lm(pressure ~ poly(volume, 2, raw = TRUE),
data=dd)
For a smoother curve, I computed the predicted value at a finer sequence of volume
values:
pframe <- data.frame(volume=seq(0,30,length=51))
pframe$pressure <- predict(lm_fit,newdata=pframe)
Now the picture:
## png("SO_poly.png")
par(las=1,bty="l") ## cosmetic
plot(pressure~volume, data=dd, pch = 19, col = "firebrick",
ylim=c(-100,500))
with(pframe, lines(volume, pressure, col="red"))
This doesn't look great, so I tried some other curve-fits.
Log-linear fit:
lm_fit2 <- lm(log(pressure) ~ poly(volume, 2, raw = TRUE),
data=dd)
pframe$lpressure <- exp(predict(lm_fit2,newdata=pframe))
with(pframe, lines(volume, lpressure, col="purple"))
Exponential fit:
glm_fit <- glm(pressure ~ poly(volume,2),
family=gaussian(link="log"),
data=dd)
pframe$gpressure <- predict(glm_fit, newdata=pframe, type="response")
with(pframe, lines(volume, gpressure, col="blue"))
## dev.off()
You could also use ggplot2
:
library(ggplot2)
ggplot(dd, aes(volume,pressure))+
geom_point()+
geom_smooth(method="lm",
formula=y~poly(x,2))
Upvotes: 1
Reputation: 346
Use ggplot2: geom_smooth lm method
library(ggplot2)
df <- data.frame(pressure = c(400, 200, 100, 50, 25, 12.5, 6.25, 3.125),
volume = c(.25, .5, 1, 2, 4, 8, 16, 32))
# Fit a regression line. Change the method if you want the exponential fitting
ggplot(data = df, aes(x = pressure, y = volume)) +
geom_point() +
geom_smooth(method = "lm")
# If you just want to connect the dots
ggplot(data = df, aes(x = pressure, y = volume)) +
geom_point() +
geom_line()
Upvotes: 1