Reputation: 1
x y
[133,28,23] female
[157,22,87] male
[160,33,77] male
[122,87,20] female
[120,22,20] female
This is the data that i have in my book.csv file.
>>fd=pandas.read_csv("C://users/admin/Desktop/Book1.csv")
>>l1=[h for h in fd.x]
After following commands, l1
stores this value:
['[133,28,23]', '[157,22,87]', '[160,33,77]', '[122,87,20]', '[120,22,20]']
The following output is string in list format, but i want nested list like this:
[[133,28,23],[157,22,87],[160,33,77],[122,87,20],[120,22,20]]
What changes do I need to make?
Upvotes: 1
Views: 76
Reputation: 59691
One simple way, if you don't want to resort to ast
(for example to avoid parsing something that is not a list):
from io import StringIO
inp = """ x y
[133,28,23] female
[157,22,87] male
[160,33,77] male
[122,87,20] female
[120,22,20] female"""
# Read data
df = pd.read_csv(StringIO(inp), delim_whitespace=True, header=0)
# Remove brackets, split and convert to int
df.x = df.x.map(lambda el: list(map(int, el.strip()[1:-1].split(','))))
# Print
l1 = [h for h in df.x]
print(l1)
Output:
[[133, 28, 23], [157, 22, 87], [160, 33, 77], [122, 87, 20], [120, 22, 20]]
Upvotes: 0
Reputation: 668
You can use json:
>> import json
>> fd=pandas.read_csv("C://users/admin/Desktop/Book1.csv")
>> l1=[json.loads(h) for h in fd.x]
[[133,28,23],[157,22,87],[160,33,77],[122,87,20],[120,22,20]]
Or ast
>> import ast
>> fd=pandas.read_csv("C://users/admin/Desktop/Book1.csv")
>> l1=[ast.literal_eval(h) for h in fd.x]
>> [[133,28,23],[157,22,87],[160,33,77],[122,87,20],[120,22,20]]
Upvotes: 0
Reputation: 61910
You could do the following, using ast.literal_eval:
import pandas as pd
import ast
data = [['[133,28,23]', 'female'],
['[157,22,87]', 'male'],
['[160,33,77]', 'male'],
['[122,87,20]', 'female'],
['[120,22,20]', 'female']]
df = pd.DataFrame(data=data, columns=['x', 'y'])
df['x'] = df['x'].apply(ast.literal_eval)
result = df['x'].tolist()
print(result)
Output
[[133, 28, 23], [157, 22, 87], [160, 33, 77], [122, 87, 20], [120, 22, 20]]
Upvotes: 2