Reputation: 441
I have an xarray dataset with three separate 4x4 matrices, currently filled with random values.
I can mask out each 4x4 matrix so that all values which are equal to zero are nan, and I would like to replace those nan values with the value from the next matrix down.
This will eventually be expanded to very large arrays of satellite imagery so I can perform searches and create imagery based off the "last best pixel". Below is the code I'm currently using for reference:
import numpy as np
import xarray as xr
dval = np.random.randint(5,size=[3,4,4])
x = [0,1,2,3]
y = [0,1,2,3]
time = ['2017-10-13','2017-10-12','2017-10-11']
a = xr.DataArray(dval,coords=[time,x,y],dims=['time','x','y'])
a = a.where(a > 0)
b = a.sel(time = time[0]).to_masked_array()
What I'd like to do is have any values masked False in b be replaced with values from the 4x4 matrix corresponding to '2017-10-12'. Any help with this would be greatly appreciated.
Upvotes: 2
Views: 11173
Reputation: 9603
You can do forward and backward filling by making using of the ffill()
and bfill()
methods, e.g.,
import numpy as np
import xarray as xr
dval = np.random.RandomState(0).randint(5,size=[3,4,4])
x = [0,1,2,3]
y = [0,1,2,3]
time = ['2017-10-13','2017-10-12','2017-10-11']
a = xr.DataArray(dval,coords=[time,x,y],dims=['time','x','y'])
a = a.where(a > 0)
filled = a.bfill('time')
Results in:
>>> a
<xarray.DataArray (time: 3, x: 4, y: 4)>
array([[[ 4., nan, 3., 3.],
[ 3., 1., 3., 2.],
[ 4., nan, nan, 4.],
[ 2., 1., nan, 1.]],
[[ 1., nan, 1., 4.],
[ 3., nan, 3., nan],
[ 2., 3., nan, 1.],
[ 3., 3., 3., nan]],
[[ 1., 1., 1., nan],
[ 2., 4., 3., 3.],
[ 2., 4., 2., nan],
[nan, 4., nan, 4.]]])
Coordinates:
* time (time) <U10 '2017-10-13' '2017-10-12' '2017-10-11'
* x (x) int64 0 1 2 3
* y (y) int64 0 1 2 3
>>> filled
<xarray.DataArray (time: 3, x: 4, y: 4)>
array([[[ 4., 1., 3., 3.],
[ 3., 1., 3., 2.],
[ 4., 3., 2., 4.],
[ 2., 1., 3., 1.]],
[[ 1., 1., 1., 4.],
[ 3., 4., 3., 3.],
[ 2., 3., 2., 1.],
[ 3., 3., 3., 4.]],
[[ 1., 1., 1., nan],
[ 2., 4., 3., 3.],
[ 2., 4., 2., nan],
[nan, 4., nan, 4.]]])
Coordinates:
* time (time) <U10 '2017-10-13' '2017-10-12' '2017-10-11'
* x (x) int64 0 1 2 3
* y (y) int64 0 1 2 3
The related interpolate_na()
method can also be handy for these situations (but not in this particular case).
Upvotes: 4