Berk U.
Berk U.

Reputation: 7188

MATLAB/General CS: Sampling Without Replacement From Multiple Sets (+Keeping Track of Unsampled Cases)

I currently implementing an optimization algorithm that requires me to sample without replacement from several sets. Although I am coding in MATLAB, this is essentially a CS question.

The situation is as follows:

I have a finite number of sets (A, B, C) each with a finite but possibly different number of elements (a1,a2...a8, b1,b2...b10, c1, c2...c25). I also have a vector of probabilities for each set which lists a probability for each element in that set (i.e. for set A, P_A = [p_a1 p_a2... p_a8] where sum(P_A) = 1). I normally use these to create a probability generating function for each set, which given a uniform number between 0 to 1, can spit out one of the elements from that set (i.e. a function P_A(u), which given u = 0.25, will select a2).

I am looking to sample without replacement from the sets A, B, and C. Each "full sample" is a sequence of elements from each of the different sets i.e. (a1, b3, c2). Note that the space of full samples is the set of all permutations of the elements in A, B, and C. In the example above, this space is (a1,a2...a8) x (b1,b2...b10) x (c1, c2...c25) and there are 8*10*25 = 2000 unique "full samples" in my space.

The annoying part of sampling without replacement with this setup is that if my first sample is (a1, b3, c2) then that does not mean I cannot sample the element a1 again - it just means that I cannot sample the full sequence (a1, b3, c2) again. Another annoying part is that the algorithm I am working with requires me do a function evaluation for all permutations of elements that I have not sampled.

The best method at my disposal right now is to keep track the sampled cases. This is a little inefficient since my sampler is forced to reject any case that has been sampled before (since I'm sampling without replacement). I then do the function evaluations for the unsampled cases, by going through each permutation (ax, by, cz) using nested for loops and only doing the function evaluation if that combination of (ax, by, cz) is not included in the sampled cases. Again, this is a little inefficient since I have to "check" whether each permutation (ax, by, cz) has already been sampled.

I would appreciate any advice in regards to this problem. In particular, I am looking a method to sample without replacement and keep track of unsampled cases that does not explicity list out the full sample space (I usually work with 10 sets with 10 elements each so listing out the full sample space would require a 10^10 x 10 matrix). I realize that this may be impossible, though finding efficient way to do it will allow me to demonstrate the true limits of the algorithm.

Upvotes: 1

Views: 626

Answers (2)

gnovice
gnovice

Reputation: 125874

Do you really need to keep track of all of the unsampled cases? Even if you had a 1-by-1010 vector that stored a logical value of true or false indicating if that permutation had been sampled or not, that would still require about 10 GB of storage, and MATLAB is likely to either throw an "Out of Memory" error or bring your entire machine to a screeching halt if you try to create a variable of that size.

An alternative to consider is storing a sparse vector of indicators for the permutations you've already sampled. Let's consider your smaller example:

A = 1:8;
B = 1:10;
C = 1:25;
nA = numel(A);
nB = numel(B);
nC = numel(C);
beenSampled = sparse(1,nA*nB*nC);

The 1-by-2000 sparse matrix beenSampled is empty to start (i.e. it contains all zeroes) and we will add a one at a given index for each sampled permutation. We can get a new sample permutation using the function RANDI to give us indices into A, B, and C for the new set of values:

indexA = randi(nA);
indexB = randi(nB);
indexC = randi(nC);

We can then convert these three indices into a single unique linear index into beenSampled using the function SUB2IND:

index = sub2ind([nA nB nC],indexA,indexB,indexC);

Now we can test the indexed element in beenSampled to see if it has a value of 1 (i.e. we sampled it already) or 0 (i.e. it is a new sample). If it has been sampled already, we repeat the process of finding a new set of indices above. Once we have a permutation we haven't sampled yet, we can process it:

while beenSampled(index)
  indexA = randi(nA);
  indexB = randi(nB);
  indexC = randi(nC);
  index = sub2ind([nA nB nC],indexA,indexB,indexC);
end
beenSampled(index) = 1;
newSample = [A(indexA) B(indexB) C(indexC)];
%# ...do your subsequent processing...

The use of a sparse array will save you a lot of space if you're only going to end up sampling a small portion of all of the possible permutations. For smaller total numbers of permutations, like in the above example, I would probably just use a logical vector instead of a sparse vector.

Upvotes: 2

eykanal
eykanal

Reputation: 27047

Check the matlab documentation for the randi function; you'll just want to use that in conjunction with the length function to choose random entries from each vector. Keeping track of each sampled vector should be as simple as just concatenating it to a matrix;

current_values = [5 89 45];  % lets say this is your current sample set
used_values = [used_values; current_values];
% wash, rinse, repeat

Upvotes: 0

Related Questions