Reputation: 598
I'm not able to select random actions for multi-agent gym environments.
def make_env(scenario_name, benchmark=False):
from multiagent.environment import MultiAgentEnv
import multiagent.scenarios as scenarios
# load scenario from script
scenario = scenarios.load(scenario_name + ".py").Scenario()
# create world
world = scenario.make_world()
# create multiagent environment
if benchmark:
env = MultiAgentEnv(world, scenario.reset_world, scenario.reward, scenario.observation, scenario.benchmark_data)
else:
env = MultiAgentEnv(world, scenario.reset_world, scenario.reward, scenario.observation)
return env
env = make_env('simple_tag')
env.reset()
for i in range(100):
env.render()
actions = [action_space.sample() for action_space in env.action_space]
env.step(actions)
The above code throws this error:
Traceback (most recent call last):
File "hello.py", line 22, in <module>
env.step(actions)
File "c:\multiagent-particle-envs\multiagent\environment.py", line 88, in step
self._set_action(action_n[i], agent, self.action_space[i])
File "c:\multiagent-particle-envs\multiagent\environment.py", line 174, in _set_action
agent.action.u[0] += action[0][1] - action[0][2]
TypeError: 'int' object is not subscriptable
I can't find a fix since there's not enough talk about these multi agent environments.
Upvotes: 2
Views: 788
Reputation: 598
Answering my own question, let's consider the simple_tag environment.
env.action_space
for this environment gives:
[Discrete(5), Discrete(5), Discrete(5), Discrete(5)]
(4 agents)
This is what I found misleading. I thought the actions would have to be a list of 4 elements, something like: [0, 3, 4, 1]
but what it expects is a one-hot vector (of 5 elements) for all 4 agents.
So, the correct way to encode actions is:
[array([1., 0., 0., 0., 0.]), array([0., 0., 1., 0., 0.]), array([0., 0., 0., 0., 1.]), array([0., 0., 0., 1., 0.])]
(depending on the environment)
Upvotes: 1