Reputation: 281
I am struggling with a problem.
I have a pandas dataframe that looks like this:
month code a b c
2018-01-01 foo 43 34324 12
2018-01-01 bar 232 34 634
2018-01-01 gar 2312 454 243
2017-01-01 foo 12 1234 34534
2017-01-01 bar 32 34232 345
2017-01-01 gar 2323 34 234
2016-01-01 foo 908 759 342
2016-01-01 bar 4654 42 865
2016-01-01 foo 3 43 34235
I am trying to reshape my dataframe so columns 'a', 'b' and 'c' are transposed and grouped by unique months as the columns. Then I need to sum my values. I am looking for something like this:
2016-01-01 2017-01-01 2018-01-01
a
b
c
Upvotes: 0
Views: 61
Reputation: 11105
Looks like you need
df.groupby('month').sum().T
sum
of each column, which by default will select only columns with numeric data types. That's why the column code
does not end up in the result..T
Upvotes: 3