Reputation: 99
First, I need to clarify that I have read the following posts but my problem still cant be solved:
Below are the code to do simulation and proceed maximum likelihood estimation.
#simulation
#a0, a1, g1, b1 and d1 are my parameters
#set true value of parameters to
#simulate a set of data with size 2000
#x is the simulated data sets
set.seed(5)
a0 = 2.3; a1 = 0.05; g1 = 0.68; b1 =
0.09; d1 = 2.0; n=2000
x = h = rep(0, n)
h[1] = 6
x[1] = rpois(1,h[1])
for (i in 2:n) {
h[i] = (a0 + a1 *
(abs(x[i-1]-h[i-1])-g1*(x[i-1]-
h[i-1]))^d1 +
b1 * (h[i-1]^d1))^(1/d1)
x[i] = rpois(1,h[i])
}
#this is my log-likelihood function
ll <- function(par) {
h.n <- rep(0,n)
a0 <- par[1]
a1 <- par[2]
g1 <- par[3]
b1 <- par[4]
d1 <- par[5]
h.n[1] = x[1]
for (i in 2:n) {
h.n[i] = (a0 + a1 *
(abs(x[i-1]-h.n[i-1])-g1*
(x[i-1]-h.n[i-1]))^d1 +
b1 * (h.n[i-1]^d1))^(1/d1)
}
-sum(dpois(x, h.n, log=TRUE))
}
#as my true value are a0 = 2.3; a1
#= 0.05; g1 = 0.68; b1 = 0.09; d1
#= 2.0
#I put the parscale to become
#c(1,0.01,0.1,0.01,1)
ps <- c(1.0, 1e-02, 1e-01, 1e-02,1.0)
#optimization to check whether
#estimate return near to the true
#value
optim(par=c(0.1,0.01,0.1,0.01,0.1),
ll, method = "L-BFGS-B",
lower=c(1e-6,-10,-10,-10, 1e- 6),
control= list(maxit=1000,
parscale=ps,trace=1))
Then I will get the result of:
> iter 10 value 3172.782149
> iter 20 value 3172.371186
> iter 30 value 3171.952137
> iter 40 value 3171.525942
> iter 50 value 3171.174571
> iter 60 value 3171.095186
> Error in optim(par = c(0.1, 0.01, 0.1, 0.01,
> 0.1), ll, method = "L-BFGS-B", : L-BFGS-B
> needs finite values of 'fn'
So I try to change the lower bound, and it returns
> > optim(par=c(0.1,0.01,0.1,0.01,0.1), ll, method = "L-BFGS-B",lower=c(1e-6,1e-6,-10,1e-6,1e-6),control=list(maxit=1000,parscale=ps,trace=1))
>
> iter 10 value 3172.782149
>
> iter 20 value 3172.371186
>
> iter 30 value 3171.952137
>
> iter 40 value 3171.525942
>
> iter 50 value 3171.174571
>
> iter 60 value 3171.095186
>
> iter 70 value 3171.076036
>
> iter 80 value 3171.044809
>
> iter 90 value 3171.014010
>
> iter 100 value 3170.991805
>
> iter 110 value 3170.971857
>
> iter 120 value 3170.954827
>
> iter 130 value 3170.941397
>
> iter 140 value 3170.925935
>
> iter 150 value 3170.915694
>
> iter 160 value 3170.904309
>
> iter 170 value 3170.894642
> iter 180 value 3170.887122
> iter 190 value 3170.880802
>
> iter 200 value 3170.874319
>
> iter 210 value 3170.870006
>
> iter 220 value 3170.866008
>
> iter 230 value 3170.865497
>
> final value 3170.865422 converged
>
> $`par` [1] 3.242429e+05
> 2.691999e-04 3.896417e-01 6.174022e-04 2.626361e+01
>
> $value [1] 3170.865
>
> $counts function gradient
> 291 291
>
> $convergence [1] 0
>
> $message [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Definitely, the estimated parameters are far from the true value.
What could I do to get close estimates to true value?
Upvotes: 0
Views: 1008
Reputation: 44788
When an MLE is far from the true value, there are several possible explanations:
You don't have enough data to get an accurate estimate. Try using a much larger sample size and see if thing come out closer.
You have coded the likelihood incorrectly. This is harder to diagnose; basically you just want to read it over and check your coding.
h[1]
is always 6
and x[1]
is a random value with that mean; in your likelihood, you're assuming that h[1]
is equal to x[1]
. That's unlikely to be true. Your likelihood doesn't have a unique maximum, because the parameters are not identifiable.
There are probably others, too.
Upvotes: 1