Reputation: 81
sorry for the stupid question, but how would I go about figuring out, mathematically or using c++, how many bytes it would take to store an integer.
Upvotes: 8
Views: 14325
Reputation: 15
Python example: no logs or exponents, just bit shift.
Note: 0
counts as 0 bits and only positive int
s are valid.
def bits(num):
"""Return the number of bits required to hold a int value."""
if not isinstance(num, int):
raise TypeError("Argument must be of type int.")
if num < 0:
raise ValueError("Argument cannot be less than 0.")
for i in count(start=0):
if num == 0:
return i
num = num >> 1
Upvotes: 0
Reputation: 18259
This code runs at 447 million tests / sec on my laptop where i
= 1 to 1E9. i
is a signed int:
n = (i > 0xffffff || i < 0) ? 4 : (i < 0xffff) ? (i < 0xff) ? 1 : 2 : 3;
Upvotes: 0
Reputation: 18259
The shortest code way to do this is as follows:
int bytes = (int)Math.Log(num, 256) + 1;
The code is small enough to be inlined, which helps offset the "slow" FP code. Also, there are no branches, which can be expensive.
Upvotes: 1
Reputation: 18449
If you mean "how large is an int" then sizeof(int)
is the answer.
If you mean "how small a type can I use to store values of this magnitude" then that's a bit more complex. If you already have the value in integer form, then presumably it fits in 4, 3, 2, or 1 bytes. For unsigned values, if it's 16777216 or over you need 4 bytes, 65536-16777216 requires 3 bytes, 256-65535 needs 2, and 0-255 fits in 1 byte. The formula for this comes from the fact that each byte can hold 8 bits, and each bit holds 2 digits, so 1 byte holds 2^8 values, ie. 256 (but starting at 0, so 0-255). 2 bytes therefore holds 2^16 values, ie. 65536, and so on.
You can generalise that beyond the normal 4 bytes used for a typical int if you like. If you need to accommodate signed integers as well as unsigned, bear in mind that 1 bit is effectively used to store whether it is positive or negative, so the magnitude is 1 power of 2 less.
You can calculate the number of bits you need iteratively from an integer by dividing it by two and discarding the remainder. Each division you can make and still have a non-zero value means you have one more bit of data in use - and every 8 bits you're using means 1 byte.
A quick way of calculating this is to use the shift right function and compare the result against zero.
int value = 23534; // or whatever
int bits = 0;
while (value)
{
value >> 1;
++bits;
}
std::cout << "Bits used = " << bits << std::endl;
std::cout << "Bytes used = " << (bits / 8) + 1 << std::endl;
Upvotes: 3
Reputation: 18572
Since nobody put up the simplest code that works yet, I mind as well do it:
unsigned int get_number_of_bytes_needed(unsigned int N) {
unsigned int bytes = 0;
while(N) {
N >>= 8;
++bytes;
};
return bytes;
};
Upvotes: 2
Reputation: 82589
/**
* assumes i is non-negative.
* note that this returns 0 for 0, when perhaps it should be special cased?
*/
int numberOfBytesForNumber(int i) {
int bytes = 0;
int div = 1;
while(i / div) {
bytes++;
div *= 256;
}
if(i % 8 == 0) return bytes;
return bytes + 1;
}
Upvotes: 0
Reputation: 5177
assuming sizeof(long int) = 4
.
int nbytes( long int x )
{
unsigned long int n = (unsigned long int) x;
if (n <= 0xFFFF)
{
if (n <= 0xFF) return 1;
else return 2;
}
else
{
if (n <= 0xFFFFFF) return 3;
else return 4;
}
}
Upvotes: 1
Reputation: 785541
Try this code:
// works for num >= 0
int numberOfBytesForNumber(int num) {
if (num < 0)
return 0;
else if (num == 0)
return 1;
else if (num > 0) {
int n = 0;
while (num != 0) {
num >>= 8;
n++;
}
return n;
}
}
Upvotes: 0
Reputation: 104080
If you mean from an information theory point of view, then the easy answer is:
log(number) / log(2)
(It doesn't matter if those are natural, binary, or common logarithms, because of the division by log(2)
, which calculates the logarithm with base 2
.)
This reports the number of bits necessary to store your number.
If you're interested in how much memory is required for the efficient or usual encoding of your number in a specific language or environment, you'll need to do some research. :)
The typical C and C++ ranges for integers are:
char 1 byte
short 2 bytes
int 4 bytes
long 8 bytes
If you're interested in arbitrary-sized integers, special libraries are available, and every library will have its own internal storage mechanism, but they'll typically store numbers via 4- or 8- byte chunks up to the size of the number.
Upvotes: 11
Reputation: 41444
This is basically the same question as "how many binary digits would it take to store a number x?" All you need is the logarithm.
A n-bit integer can store numbers up to 2n-1. So, given a number x, ceil(log2 x) gets you the number of digits you need.
It's exactly the same thing as figuring out how many decimal digits you need to write a number by hand. For example, log10 123456 = 5.09151220... , so ceil( log10(123456) ) = 6, six digits.
Upvotes: 2
Reputation: 81704
You could find the first power of 2 that's larger than your number, and divide that power by 8, then round the number up to the nearest integer. So for 1000, the power of 2 is 1024 or 2^10; divide 10 by 8 to get 1.25, and round up to 2. You need two bytes to hold 1000!
Upvotes: 9