Reputation: 1586
I have written a function that does a few analysis including calculating a measure called "Net Promoter Score" using NPS
package.
library(dplyr)
library(tidyr)
library(NPS)
df<-data.frame(score = sample(c(0:10),15,replace=TRUE),
variable = sample(c('A', 'B', 'C'),15,replace=TRUE)
)
analyzer <- function(df,var, sco){
df %>% group_by_(var) %>% transmute(n= nps(sco)) %>% unique()
}
analyzer(df,'variable','score')
This returns NA
for all levels of variable.
Now dplyr functions have a way of dealing with x
being handed to them as character(i.e., their _
version which I've used here), but the nps
function doesn't. I also tried passing score column as nps(.[[score]])
but this returns the NPS for the whole column and doesn't break it down by group_by levels.
Upvotes: 0
Views: 136
Reputation: 4879
It's because the inputs to functions are not getting evaluated properly-
(Note that the way it is implemented here, the function will work irrespective of whether you enter a bare expression x = x
or a character x = "x"
)
library(dplyr)
library(tidyr)
library(NPS)
set.seed(123)
# data
df <- data.frame(score = sample(c(0:10), 15, replace = TRUE),
variable = sample(c('A', 'B', 'C'), 15, replace = TRUE))
# custom function
analyzer <- function(df, var, sco) {
var <- rlang::ensym(var)
sco <- rlang::ensym(sco)
df <- df %>%
group_by(., !!rlang::enquo(var)) %>%
transmute(., n = NPS::nps(!!rlang::enquo(sco))) %>%
unique()
return(df)
}
# using function
analyzer(df, 'variable', 'score')
#> # A tibble: 3 x 2
#> # Groups: variable [3]
#> variable n
#> <fct> <dbl>
#> 1 C -0.333
#> 2 A -0.4
#> 3 B -0.25
Created on 2018-11-18 by the reprex package (v0.2.1)
Upvotes: 1
Reputation: 171
You can use the rlang package and then uquote your variables with !!
library(dplyr)
library(tidyr)
library(NPS)
library(rlang)
df<-data.frame(score = sample(c(0:10),15,replace=TRUE),
variable = sample(c('A', 'B', 'C'),15,replace=TRUE)
)
analyzer <- function(df,var, sco){
var <- rlang::enquo(var)
sco <- rlang::enquo(sco)
df %>% group_by(!!var) %>% transmute(n= nps(!!sco)) %>% unique()
}
analyzer(df, variable,score)
Upvotes: 6