Reputation: 1351
I am currently developing using DDS with the security plugins enable. When the application starts, it looks for the path to the CA certificate, Local certificate and private key and load them in memory for future usage.
Certificates containing the public keys are not sensitive as they are usually sent in clear and checked using the CA certificate. So an attacker has no need to get access to it. Is that correct?
However, on a Ubuntu filesystem, how can I protect the private key? The only way I see is to put the key as Read-Only only for a specific user that will run the application. But because of privilege escalation, this seems insecure.
Are there secure way to secure private keys on a filesystem ?
About the permissions_ca and Governance/Permissions documents, if those are updated by an attacker (which would create its own CA and sign new Governance/Permissions documents), then, can an application could have more permissions? Meaning that those documents should be secured on the filesystem?
Upvotes: 4
Views: 260
Reputation: 17373
Most of your questions are not specific to DDS Security, but are about general Public Key Infrastructure (PKI) mechanisms as leveraged by DDS Security.
Certificates containing the public keys are not sensitive as they are usually sent in clear and checked using the CA certificate. So an attacker has no need to get access to it. Is that correct?
Yes, that is correct. The built-in plugins as defined by the DDS Security specification use a PKI. The public key certificate does normally not contain any confidential information.
However, on a Ubuntu filesystem, how can I protect the private key?
Using "traditional" Unix permissions to allow only the owner of the file to access it is common practice. For example, SSH on Ubuntu by default stores private keys that way, in ~/.ssh
. Additionally, the specification allows for encryption of the private key using a passphrase. That too is common practice.
Whether this is good enough for your scenario depends on your system's requirements. It is possible to integrate with existing, stronger key storage solutions like Windows certificate stores or macOS keychains by implementing customize security plugins. The pluggable architecture as defined in the spec was intended to allow for that, but the actual availability of such solutions depends on the DDS product that you are using.
About the permissions_ca and Governance/Permissions documents, if those are updated by an attacker (which would create its own CA and sign new Governance/Permissions documents), then, can an application could have more permissions?
Both the Governance and Permissions documents have to be signed by a signing authority. Tampering with those files would break the signature verification and therefore would be detected by other Participants in the Domain.
All participants in the secured DDS Domain need to trust the same signing authority to make this mechanism work. For an attacker to successfully modify a Governance or Permissions document, it would have to have access to the private keys of the signing authority. Again, this is a common technique used in public key infrastructures similar to the public key certificate signing.
In spite of the tamper protection, it still makes sense to protect those files. The actual result of tampering or deletion of those files would be a denial of service, which is harmful as well.
Upvotes: 2