Reputation: 167
In the following code I have implemented composite Simpsons Rule in python. I have tested it by integrating f = sinx over [0,pi/2] and plotting the resulting absolute error as a function of n for a suitable range of integer values for n. As shown below. Now I am trying to verify that my method is of order 4. To do this instead of plotting the error vs n I need to plot n vs n^(-4) to show that both have the same slope.
from math import pi, cos, sin
from matplotlib import pyplot as plt
def simpson(f, a, b, n):
"""Approximates the definite integral of f from a to b by the composite Simpson's rule, using 2n subintervals """
h = (b - a) / (2*n)
s = f(a) + f(b)
for i in range(1, 2*n, 2):
s += 4 * f(a + i * h)
for i in range(2, 2*n-1, 2):
s += 2 * f(a + i * h)
return s * h / 3
diffs = {}
exact = 1 - cos(pi/2)
for n in range(1, 100):
result = simpson(lambda x: sin(x), 0.0, pi/2, n)
diffs[2*n] = abs(exact - result) # use 2*n or n here, your choice.
ordered = sorted(diffs.items())
x,y = zip(*ordered)
plt.autoscale()
plt.loglog(x,y)
plt.xlabel("Intervals")
plt.ylabel("Error")
plt.show()
this results in my error graph:
Upvotes: 1
Views: 158
Reputation: 39082
You can add another line to your plot by making another call to plt.loglog()
. So just before your plt.show()
you can add:
n = []
n_inv_4 = []
for i in range(1,100):
n.append(2*i)
n_inv_4.append(1.0 / ((2*i)**4))
plt.loglog(n, n_inv_4)
Note that the above calculations use (2*i) to match the (2*n) used in the simpson
method.
Upvotes: 1