Reputation: 13
Me and my friend are trying to implement a paper and the last step requires solving a linear programming problem to get the final result. We are not so familiar with LP so i'd like to ask for your help.
Here's the function which is based on the PROFSET model
and here's the proposed constraints
(1)
(2)
where:
Constraint (1) actually says that Qi is 1 if category i is included in some itemset A where Pa = 1
Basically, we are trying to use some common open source lp solvers (like joptimizer) but we dont know how to define those constraints, especially those that define set inclusion rules. Most of those solvers seem to accept just inequalities.
So, do you have any idea about how to define those constraints? Maybe transform them to inequalities or something? Any help would be appreciated.
Thank you
Upvotes: 0
Views: 323
Reputation: 1037
A constraint that is written as an equality can be also written as two inequalities. e.g.
In order to write such a LP there are two ways.
If you still want to hardcode your LP GLPK has nice examples e.g. in JAVA:
public class Lp {
// Minimize z = -.5 * x1 + .5 * x2 - x3 + 1
//
// subject to
// 0.0 <= x1 - .5 * x2 <= 0.2
// -x2 + x3 <= 0.4
// where,
// 0.0 <= x1 <= 0.5
// 0.0 <= x2 <= 0.5
// 0.0 <= x3 <= 0.5
public static void main(String[] arg) {
glp_prob lp;
glp_smcp parm;
SWIGTYPE_p_int ind;
SWIGTYPE_p_double val;
int ret;
try {
// Create problem
lp = GLPK.glp_create_prob();
System.out.println("Problem created");
GLPK.glp_set_prob_name(lp, "myProblem");
// Define columns
GLPK.glp_add_cols(lp, 3);
GLPK.glp_set_col_name(lp, 1, "x1");
GLPK.glp_set_col_kind(lp, 1, GLPKConstants.GLP_CV);
GLPK.glp_set_col_bnds(lp, 1, GLPKConstants.GLP_DB, 0, .5);
GLPK.glp_set_col_name(lp, 2, "x2");
GLPK.glp_set_col_kind(lp, 2, GLPKConstants.GLP_CV);
GLPK.glp_set_col_bnds(lp, 2, GLPKConstants.GLP_DB, 0, .5);
GLPK.glp_set_col_name(lp, 3, "x3");
GLPK.glp_set_col_kind(lp, 3, GLPKConstants.GLP_CV);
GLPK.glp_set_col_bnds(lp, 3, GLPKConstants.GLP_DB, 0, .5);
// Create constraints
// Allocate memory
ind = GLPK.new_intArray(3);
val = GLPK.new_doubleArray(3);
// Create rows
GLPK.glp_add_rows(lp, 2);
// Set row details
GLPK.glp_set_row_name(lp, 1, "c1");
GLPK.glp_set_row_bnds(lp, 1, GLPKConstants.GLP_DB, 0, 0.2);
GLPK.intArray_setitem(ind, 1, 1);
GLPK.intArray_setitem(ind, 2, 2);
GLPK.doubleArray_setitem(val, 1, 1.);
GLPK.doubleArray_setitem(val, 2, -.5);
GLPK.glp_set_mat_row(lp, 1, 2, ind, val);
GLPK.glp_set_row_name(lp, 2, "c2");
GLPK.glp_set_row_bnds(lp, 2, GLPKConstants.GLP_UP, 0, 0.4);
GLPK.intArray_setitem(ind, 1, 2);
GLPK.intArray_setitem(ind, 2, 3);
GLPK.doubleArray_setitem(val, 1, -1.);
GLPK.doubleArray_setitem(val, 2, 1.);
GLPK.glp_set_mat_row(lp, 2, 2, ind, val);
// Free memory
GLPK.delete_intArray(ind);
GLPK.delete_doubleArray(val);
// Define objective
GLPK.glp_set_obj_name(lp, "z");
GLPK.glp_set_obj_dir(lp, GLPKConstants.GLP_MIN);
GLPK.glp_set_obj_coef(lp, 0, 1.);
GLPK.glp_set_obj_coef(lp, 1, -.5);
GLPK.glp_set_obj_coef(lp, 2, .5);
GLPK.glp_set_obj_coef(lp, 3, -1);
// Write model to file
// GLPK.glp_write_lp(lp, null, "lp.lp");
// Solve model
parm = new glp_smcp();
GLPK.glp_init_smcp(parm);
ret = GLPK.glp_simplex(lp, parm);
// Retrieve solution
if (ret == 0) {
write_lp_solution(lp);
} else {
System.out.println("The problem could not be solved");
}
// Free memory
GLPK.glp_delete_prob(lp);
} catch (GlpkException ex) {
ex.printStackTrace();
ret = 1;
}
System.exit(ret);
}
/**
* write simplex solution
* @param lp problem
*/
static void write_lp_solution(glp_prob lp) {
int i;
int n;
String name;
double val;
name = GLPK.glp_get_obj_name(lp);
val = GLPK.glp_get_obj_val(lp);
System.out.print(name);
System.out.print(" = ");
System.out.println(val);
n = GLPK.glp_get_num_cols(lp);
for (i = 1; i <= n; i++) {
name = GLPK.glp_get_col_name(lp, i);
val = GLPK.glp_get_col_prim(lp, i);
System.out.print(name);
System.out.print(" = ");
System.out.println(val);
}
}}
Upvotes: 1