Reputation: 3284
I've written this simplified example to explain what I'm trying to achieve:
import pandas as pd
import pytest
def enable_rows(df, row, myrange):
# Need to modify this
df.loc[row + myrange:, 'enabled'] = True
df.loc[:row - myrange, 'enabled'] = True
def starting_df():
# just re-creates the initial dataframe to check on values
distance = {1: (100.0, 'a', False),
2: (100.0, 'a', False),
3: (100.0, 'a', False),
4: (700.0, 'b', False),
5: (700.0, 'b', False),
6: (900.0, 'c', False)}
return pd.DataFrame(data=list(distance.values()), index=list(
distance.keys()), columns=['distance', 'letter', 'enabled'])
def test_enable(center_row, myrange):
# convenience function to eye-candy the executions.
df = starting_df()
enable_rows(df, center_row, myrange)
print(df)
# assertions
enabled = df.loc[df.enabled]
if not ((len(enabled) == 3) and
(len(enabled.loc[df.distance == 100.0]) == 0) and
(len(enabled.loc[df.distance > 100.0]) == 3)):
print("wrong result")
test_enable(1, 2)
test_enable(2, 1)
The distance dataframe has several contingent rows having the same distance
and letter
columns. initially they are all enabled == False
I need to set some of them enabled == True
based on their row
index and a range
value, so that all rows with a range
distance from the one with index row
will be enabled (and this I managed to get in my enable_rows
function).
Additionally I need that if one distance
value wouldn't have all its rows enabled then none should be enabled.
both examples in the code above would have some of the distance == 100.0
rows still not enabled, so none of the 100.0 should be enabled.
They expect a resulting dataframe as :
distance letter enabled
1 100.0 a False
2 100.0 a False
3 100.0 a False
4 700.0 b True
5 700.0 b True
6 900.0 c True
but the actual output of the program is:
distance letter enabled
1 100.0 a False
2 100.0 a False
3 100.0 a True
4 700.0 b True
5 700.0 b True
6 900.0 c True
wrong result
distance letter enabled
1 100.0 a True
2 100.0 a False
3 100.0 a True
4 700.0 b True
5 700.0 b True
6 900.0 c True
wrong result
how could I update enable_rows
to obtain that?
Upvotes: 1
Views: 37
Reputation: 4137
You just need to groupby
'distances'
and transform
the result if all the enabled
values are not True
. You can do this with:
df['enabled'] = df.groupby('distance')['enabled'].transform(lambda x: all(x)==True)
Which you can use here
def enable_rows(df, row, myrange):
# Need to modify this
df.loc[row + myrange:, 'enabled'] = True
df.loc[:row - myrange, 'enabled'] = True
df['enabled'] = df.groupby('distance')['enabled'].transform(lambda x: all(x)==True)
Upvotes: 1