Reputation: 23
I am trying to query a large chunk of data by time from cassandra, and then use spark Datasets to get smaller chunks to process at a time, however, the application fails with an invalid query exception:
WARN 2018-11-22 13:16:54 org.apache.spark.scheduler.TaskSetManager: Lost task 0.0 in stage 2.0 (TID 5, 192.168.1.212, executor 0): java.io.IOException: Exception during preparation of SELECT "userid", "event_time", "value" FROM "user_1234"."data" WHERE token("userid") > ? AND token("userid") <= ? AND "event_time" >= ? AND "event_time" >= ? AND "event_time" <= ? ALLOW FILTERING: More than one restriction was found for the start bound on event_time
at com.datastax.spark.connector.rdd.CassandraTableScanRDD.createStatement(CassandraTableScanRDD.scala:323)
at com.datastax.spark.connector.rdd.CassandraTableScanRDD.com$datastax$spark$connector$rdd$CassandraTableScanRDD$$fetchTokenRange(CassandraTableScanRDD.scala:339)
at com.datastax.spark.connector.rdd.CassandraTableScanRDD$$anonfun$17.apply(CassandraTableScanRDD.scala:366)
at com.datastax.spark.connector.rdd.CassandraTableScanRDD$$anonfun$17.apply(CassandraTableScanRDD.scala:366)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at com.datastax.spark.connector.util.CountingIterator.hasNext(CountingIterator.scala:12)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:234)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: More than one restriction was found for the start bound on event_time
at com.datastax.driver.core.exceptions.InvalidQueryException.copy(InvalidQueryException.java:41)
at com.datastax.driver.core.DriverThrowables.propagateCause(DriverThrowables.java:28)
at com.datastax.driver.core.AbstractSession.prepare(AbstractSession.java:108)
at com.datastax.driver.dse.DefaultDseSession.prepare(DefaultDseSession.java:278)
at com.datastax.spark.connector.cql.PreparedStatementCache$.prepareStatement(PreparedStatementCache.scala:45)
This is the piece of code I am trying to execute:
case class RawDataModel(userid: String, event_time: Long, value: Double)
var dtRangeEnd = System.currentTimeMillis()
var dtRangeStart = (dtRangeEnd - (60 * 60 * 1000).toLong)
val queryTimeRange = "SELECT * FROM user1234.datafile WHERE event_time >= " + dtRangeStart
val dataFrame = sparkSession.sql(queryTimeRange)
import sparkSession.implicits._
val dataSet: Dataset[RawDataModel] = dataFrame.as[RawDataModel]
dataSet.show(1)
dtRangeEnd = System.currentTimeMillis()
dtRangeStart = (dtRangeEnd - (15 * 60 * 1000).toLong)
val dtRangeData = dataSet.filter(dataSet("event_time").between(dtRangeStart, dtRangeEnd))
dtRangeData.show(1)
Note: This is not a DataSets problem since I have tried to swap them with DataFrames with no difference. I thought this was a lazy evaluation problem at first with two different bounds being lazily applied at the same time but the dataSet.show(1) command should call an early aggregation and avoid cascaded evaluation
Upvotes: 2
Views: 301
Reputation: 1240
Spark merges sparkSession.sql(queryTimeRange)
and dataSet.filter(dataSet("event_time").between(dtRangeStart, dtRangeEnd))
into one command which in cql looks like:
SELECT "sensorid", "event_time", "value" FROM "company_5a819ee2522e572c8a16a43a"."data" WHERE token("sensorid") > ? AND token("sensorid") <= ? AND "event_time" >= ? AND "event_time" >= ? AND "event_time" <= ?
And there you get two same restrictions on the same field "event_time" >= ?
.
If you persist dataFrame
before the execution of .filter
Spark will compute dataFrame
separately from .filter
:
val dataFrame = sparkSession.sql(queryTimeRange)
dataFrame.persist
dataFrame.filter(dataSet("event_time").between(dtRangeStart, dtRangeEnd))
Upvotes: 2