Jsevillamol
Jsevillamol

Reputation: 2543

Aggregate dataframe rows into a dictionary

I have a pandas DataFrame object where each row represents one object in an image.

One example of a possible row would be:

{'img_filename': 'img1.txt', 'img_size':'20', 'obj_size':'5', 'obj_type':'car'}

I want to aggregate all the objects that belong to the same image, and get something whose rows would be like:

{'img_filename': 'img1.txt', 'img_size':'20', 'obj': [{'obj_size':'5', 'obj_type':'car'}, {{'obj_size':'6', 'obj_type':'bus'}}]}

That is, the third column is a list of columns containing the data of each group.

How can I do this?

EDIT:

Consider the following example.

import pandas as pd
df1 = pd.DataFrame([
{'img_filename': 'img1.txt', 'img_size':'20', 'obj_size':'5', 'obj_type':'car'}, 
{'img_filename': 'img1.txt', 'img_size':'20', 'obj_size':'6', 'obj_type':'bus'}, 
{'img_filename': 'img2.txt', 'img_size':'25', 'obj_size':'4', 'obj_type':'car'}
])

df2 = pd.DataFrame([
{'img_filename': 'img1.txt', 'img_size':'20', 'obj': [{'obj_size':'5', 'obj_type':'car'}, {'obj_size':'6', 'obj_type':'bus'}]},
{'img_filename': 'img2.txt', 'img_size':'25', 'obj': [{'obj_size':'4', 'obj_type':'car'}]}
])

I want to turn df1 into df2.

Upvotes: 1

Views: 896

Answers (2)

Srce Cde
Srce Cde

Reputation: 1824

One liner.

Suppose you have same img_filename and different img_size and you want to join the value. For ex:

  img_filename img_size obj_size obj_type
0     img1.txt       20        5      car
1     img1.txt       22        6      bus
2     img2.txt       25        4      car

# if you want to join the img_size of img1.txt like 20, 22
df2 = df1.groupby("img_filename")["img_size", "obj_size", "obj_type"].apply(lambda x: pd.Series({"obj": x[["obj_size", "obj_type"]].to_json(orient="records"), "img_size": ','.join(x["img_size"])})).reset_index()

Output:

  img_filename                                                obj img_size
0     img1.txt  [{"obj_size":"5","obj_type":"car"},{"obj_size"...    20,22
1     img2.txt                [{"obj_size":"4","obj_type":"car"}]       25

Considering first value

#if you want to consider only first value i.e. 20
df2 = df1.groupby("img_filename")["img_size", "obj_size", "obj_type"].apply(lambda x: pd.Series({"obj": x[["obj_size", "obj_type"]].to_json(orient="records"), "img_size": x["img_size"].iloc[0]})).reset_index()

Output:

  img_filename                                                obj img_size
0     img1.txt  [{"obj_size":"5","obj_type":"car"},{"obj_size"...       20
1     img2.txt                [{"obj_size":"4","obj_type":"car"}]       25

Upvotes: 1

Abhi
Abhi

Reputation: 4233

One way using to_dict

df2 = df1.groupby('img_filename')['obj_size','obj_type'].apply(lambda x: x.to_dict('records'))
df2 = df2.reset_index(name='obj')

# Assuming you have multiple same img files with different sizes then I'm choosing first.
# If this not the case then groupby directly and reset index.
#df1.groupby('img_filename, 'img_size')['obj_size','obj_type'].apply(lambda x: x.to_dict('records'))

df2['img_size'] = df1.groupby('img_filename')['img_size'].first().values

print (df2)

  img_filename                                                obj img_size
0     img1.txt  [{'obj_size': '5', 'obj_type': 'car'}, {'obj_s...       20
1     img2.txt             [{'obj_size': '4', 'obj_type': 'car'}]       25

Upvotes: 1

Related Questions