Reputation: 63
I wrote this to determine the largest prime factor of any given number. It works well for numbers with less than 9 digits but behaves in an indefinite manner when the number of digits goes beyond nine. How can I optimize it?
def is_prime(x):
u = 1
i = 2
while i < x:
if x%i == 0:
u = 0
break
else:
i = i+1
return u
def detprime(x,y):
if x%y == 0:
if (is_prime(y)):
return 1
else:
return 0
else:
return 0
def functionFinal(x):
import math
factors = []
y = x//2
for i in range(1,y):
if detprime(x,i) == 1:
factors.append(i)
y = len(factors)
print(factors[y-1])
import time
start_time = time.process_time()
print("Enter a number")
num = int(input())
functionFinal(num)
print(time.process_time()-start_time)
Upvotes: 3
Views: 331
Reputation: 2900
You can improve your code by having a more efficient function to check primality. Apart form that, you need to only store the last element of your list factors
. Also, you can increase the speed by JIT compiling the function and using parallelisation. In the code below, I use numba.
import math
import numba as nb
@nb.njit(cache=True)
def is_prime(n):
if n % 2 == 0 and n > 2:
return 0
for i in range(3, int(math.sqrt(n)) + 1, 2):
if n % i == 0:
return 0
return 1
@nb.njit(cache=True)
def detprime(x, y):
if x % y == 0:
if (is_prime(y)):
return 1
else:
return 0
else:
return 0
@nb.njit(parallel=True)
def functionFinal(x):
factors = [1]
y = x // 2
for i in nb.prange(1, y): # check in parallel
if detprime(x, i) == 1:
factors[-1] = i
return factors[-1]
So, that
functionFinal(234675684)
has the performance comparison,
Your code : 21.490s
Numba version (without parallel) : 0.919s
Numba version (with parallel) : 0.580s
HTH.
Upvotes: 3