Reputation: 656
The df_vol
DataFrame is created as follows
df_vol = df.loc[:, 1].map(fd.retrieve_symbol_datetime).to_frame('maturity')
df_vol['date'] = df_vol.index.date
df_vol.head()
maturity date
2018-11-01 11:31:53.023 2022-04-01 2018-11-01
2018-11-01 16:30:15.287 2022-04-01 2018-11-01
2018-11-01 10:23:06.779 2022-10-01 2018-11-01
2018-11-01 16:30:15.291 2022-10-01 2018-11-01
2018-11-01 11:30:56.251 2018-12-01 2018-11-01
A further inspection of df_vol
shows
df_vol.dtypes
maturity category
date object
dtype: object
I would expect that maturity
column is of a date type as it is filled by the content of the fd.retrieve_symbol_datetime()
, a function that returns pandas.datetime()
.
Also, the date
column is an object type though it takes the values from index.date
.
I'm interested in having types of datetime
since I eventually I want to do the difference
pd.eval("(df_vol.maturity - df_vol.date)")
retrieve_symbol_datetime()
def retrieve_symbol_datetime(future: str):
"""
Retrieves the maturity date of a future whose format is of the form AAAMYY.
Params
-------
future : string, of form 'AAAMYY'
This format is for futures where 'AAA' is the string that identifies
the symbol, 'M' is the character that identifies the month, and 'YY' is
a two-digit number that identifies the year.
Returns : pandas.datetime
Returns the date of maturiry of the future's symbol.
Example
-------
If future = 'DI1Z20', then it returnts a pandas.datetime(2020, 12, 01).
"""
year = 2000 + int(future[4: 6])
month = convert_letter_symbol_month(future[3: 4])
return pd.datetime(year, month, 1).date()
Upvotes: 3
Views: 64
Reputation: 862601
There is problem categorical
column, one possible solution is decategorical it and for date
use floor
for remove times:
df_vol['maturity'] = pd.to_datetime(df_vol['maturity'].astype(str))
df_vol['date'] = df_vol.index.floor('d')
df_vol['diff'] = (df_vol['maturity'] - df_vol['date']).dt.days
print (df_vol)
maturity date diff
2018-11-01 11:31:53.023 2022-04-01 2018-11-01 1247
2018-11-01 16:30:15.287 2022-04-01 2018-11-01 1247
2018-11-01 10:23:06.779 2022-10-01 2018-11-01 1430
2018-11-01 16:30:15.291 2022-10-01 2018-11-01 1430
2018-11-01 11:30:56.251 2018-12-01 2018-11-01 30
Upvotes: 1