Reputation: 462
I have a dataframe with multiple variables and I would like to find the quantiles () of each of these variables
Sample code:
testtable = data.frame(groupvar = c(rep('x',100), rep('y',100)),
numericvar = rnorm(200))
I want to apply quantile(., c(.05, .1, .25, .5, .75, .9, .95)
) to each of the variables in testtable
. The ideal result would look like
x y
.05 .05
.1 .1
.25 .25
.5 .5
.75 .75
.9 .9
.95 .95
where each entry is a quantile of x
or y
. For sample, .05
is the 5th percentile of the x
.1
is the 10th percentile distribution of x
, etc.
I tried summarise
in dplyr
but ran into a problem because my quantile
function is returning a vector of length 7.
What is the best way to do this?
Upvotes: 0
Views: 2838
Reputation: 83245
Another option:
pr <- c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95)
as.data.frame.list(tapply(testtable$numericvar, testtable$groupvar,
quantile, probs = pr))
which gives:
x y 5% -1.57823487 -1.5142682 10% -1.28807795 -1.2153000 25% -0.60598752 -0.6889401 50% -0.07536852 -0.2036487 75% 0.57269482 0.4892494 90% 1.04087379 1.2231926 95% 1.22329927 1.7421848
Upvotes: 1
Reputation: 51592
Here is a base R solution where we unstack
the data frame and calculating the quantile for each column, for each quantile, i.e.
sapply(unstack(testtable, numericvar ~ groupvar), function(i) quantile(i, v1))
which gives,
x y 5% -1.82980882 -1.49900735 10% -1.26047295 -1.02626933 25% -0.83928910 -0.68248217 50% 0.02757385 -0.02096953 75% 0.64842517 0.48624513 90% 1.63382801 1.09722178 95% 1.91104161 1.72846846
where v1 <- c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95)
Upvotes: 4
Reputation: 8364
Another possibility with lapply
, we need to convert first to list
:
l <- split(testtable$numericvar, testtable$groupvar)
Now we can get the quantile
then trasform back to data.frame
:
ll <- lapply(l, function(x) quantile(unlist(x), c(.05, .1, .25, .5, .75, .9, .95)))
as.data.frame(ll)
# x y
# 5% -1.8028162 -1.69293054
# 10% -1.3129427 -1.23125086
# 25% -0.7335853 -0.57010352
# 50% -0.1223181 0.05119533
# 75% 0.6727871 0.66203631
# 90% 1.3411195 1.08830220
# 95% 1.7068070 1.54248740
This could be turned in a function to call, you can add more to it to make it more general:
quantile_grouped <- function(data, group_var = "groupvar", quantile_var = "numericvar") {
l <- split(testtable[, quantile_var], testtable[, group_var ])
ll <- lapply(l, function(x) quantile(unlist(x), c(.05, .1, .25, .5, .75, .9, .95)))
as.data.frame(ll)
}
quantile_grouped(testtable)
Upvotes: 2