Reputation: 83
I have a "How can I do that" question with keras :
Assuming that I have a first neural network, say NNa which has 4 inputs (x,y,z,t) which is already trained. If I have a second neural network, say NNb, and that its loss function depends on the first neural network.
The custom loss function of NNb customLossNNb
calls the prediction of NNa with a fixed grid (x,y,z) and just modify the last variable t.
Here in pseudo-python-code what I would like to do to traine the second NN : NNb:
grid=np.mgrid[0:10:1,0:10:1,0:10:1].reshape(3,-1).T
Y[:,0]=time
Y[:,1]=something
def customLossNNb(NNa,grid):
def diff(y_true,y_pred):
for ii in range(y_true.shape[0]):
currentInput=concatenation of grid and y_true[ii,0]
toto[ii,:]=NNa.predict(currentInput)
#some stuff with toto
return #...
return diff
Then
NNb.compile(loss=customLossNNb(NNa,K.variable(grid)),optimizer='Adam')
NNb.fit(input,Y)
In fact the line that cause me troubles is currentInput=concatenation of grid and y_true[ii,0]
I tried to send to customLossNNb the grid as a tensor with K.variable(grid)
. But I can't defined a new tensor inside the loss function, something like CurrentY
which has a shape (grid.shape[0],1)
fill with y[ii,0]
(i.e. the current t) and then concatenate grid
and currentY
to build currentInput
Any ideas?
Thanks
Upvotes: 1
Views: 1909
Reputation: 86600
First, make NNa
untrainable. Notice that you should do this recursively if your model has inner models.
def makeUntrainable(layer):
layer.trainable = False
if hasattr(layer, 'layers'):
for l in layer.layers:
makeUntrainable(l)
makeUntrainable(NNa)
Then you have two options:
y_true
and y_pred
will be changed)
NNa
inside it, without changing your targetsinputs = NNb.inputs
outputs = NNa(NNb.outputs) #make sure NNb is outputing 4 tensors to match NNa inputs
fullModel = Model(inputs,outputs)
#changing the targets:
newY_train = NNa.predict(oldY_train)
Warning: please test whether NNa's weights are really frozen while training this configuration
from keras.losses import binary_crossentropy
def customLoss(true,pred):
true = NNa(true)
pred = NNa(pred)
#use some of the usual losses or create your own
binary_crossentropy(true,pred)
NNb.compile(optimizer=anything, loss = customLoss)
Upvotes: 0
Reputation: 1040
You can include your custom loss function into the graph using functional API of keras. The model in this case can be used as a function, something like this:
for l in NNa.layers:
l.trainable=False
x=Input(size)
y=NNb(x)
z=NNa(y)
Predict method will not work, since loss function should be part of the graph, and predict method returns np.array
Upvotes: 1