SanMu
SanMu

Reputation: 765

Pandas - calculate new column with variable column input

heres the problem... Imagine the following dataframe as an example:

df = pd.DataFrame({'col1': [1, 2, 3, 4, 5], 'col2': [3, 4, 5, 6, 7],'col3': [3, 4, 5, 6, 7],'col4': [1, 2, 3, 3, 2]})

Now, I would like to add another column "col 5" which is calculated as follows:

if the value of "col4" is 1, then give me the corresponding value in the column with index 1 (i.e. "col2" in this case), if "col4" is 2 give me the corresponding value in the column with index 2 (i.e. "col3" in this case), etc.

I have tried the below and variations of it, but I can't seem to get the right result

df["col5"] = df.apply(lambda x: df.iloc[x,df[df.columns[df["col4"]]]])

Any help is much appreciated!

Upvotes: 1

Views: 237

Answers (2)

jpp
jpp

Reputation: 164623

You can use fancy indexing with NumPy and avoid a Python-level loop altogether:

df['col5'] = df.iloc[:, :4].values[np.arange(df.shape[0]), df['col4']]

print(df)

   col1  col2  col3  col4  col5
0     1     3     3     1     3
1     2     4     4     2     4
2     3     5     5     3     3
3     4     6     6     3     3
4     5     7     7     2     7

You should see significant performance benefits for larger dataframes:

df = pd.concat([df]*10**4, ignore_index=True)

%timeit df.apply(lambda x: x[df.columns[x['col4']]], axis=1)       # 2.36 s per loop
%timeit df.iloc[:, :4].values[np.arange(df.shape[0]), df['col4']]  # 1.01 ms per loop

Upvotes: 1

zipa
zipa

Reputation: 27869

If your 'col4' is the indicator of column index, this will work:

df['col5'] = df.apply(lambda x: x[df.columns[x['col4']]], axis=1)

df

#   col1  col2  col3  col4  col5
#0     1     3     3     1     3
#1     2     4     4     2     4
#2     3     5     5     3     3
#3     4     6     6     3     3
#4     5     7     7     2     7

Upvotes: 2

Related Questions