Reputation: 827
In the summary output the MSE for cross-validation data is 0.1641124, however, it is 0.14977892 in the detailed Cross-Validation Metrics Summary. Are they not the same metrics?
library(h2o)
h <- h2o.init()
data <- as.h2o(iris)
part <- h2o.splitFrame(data, 0.7, seed = 123)
train <- part[[1]]
test <- part[[2]]
m <- h2o.glm(x=2:5,y=1,train, nfolds = 10, seed = 123)
summary(m)
#...
#H2ORegressionMetrics: glm
#** Reported on cross-validation data. **
#** 10-fold cross-validation on training data (Metrics computed for combined
#holdout predictions) **
#MSE: ***0.1641124***
#RMSE: 0.4051079
#...
#Cross-Validation Metrics Summary:
# mean sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid cv_5_valid cv_6_valid cv_7_valid cv_8_valid cv_9_valid
#...
# mse ***0.14977892*** 0.053578787 0.14102486 0.14244498 0.05266633 0.19028585 0.043878503 0.12635022 0.13820939 0.15831167 0.33359975
Upvotes: 3
Views: 430
Reputation: 19716
These two MSE values are calculated differently.
The first one (0.1641124) is calculated using all the predictions on the hold out sets during cross validation:
create model:
m <- h2o.glm(x = 2:5,
y = 1,
train,
nfolds = 10,
seed = 123,
keep_cross_validation_predictions = TRUE,
keep_cross_validation_fold_assignment = TRUE)
extract hold out predictions
preds <- as.data.frame(h2o.cross_validation_holdout_predictions(m))
calculate MSE:
mean((preds$predict - as.data.frame(train)$Sepal.Length)^2)
#output
0.1641125
wheres the lower MSE (0.14977892) represents the average of MSE for each hold out set:
folds <- as.data.frame(h2o.cross_validation_fold_assignment(m))
library(tidyverse)
data.frame(preds = preds$predict, #create a data frame with hold out predictions
folds = folds$fold_assignment, #folds assignement
true = as.data.frame(train)$Sepal.Length) %>% #true values
group_by(folds) %>% #group by folds
summarise(mse = mean((preds - true)^2)) %>% # calculate mse for each fold
ungroup() %>%
summarise(mse = mean(mse)) %>% #average them
as.numeric
#output
0.1497789
to reproduce first run:
library(h2o)
h <- h2o.init()
data <- as.h2o(iris)
part <- h2o.splitFrame(data, 0.7, seed = 123)
train <- part[[1]]
test <- part[[2]]
Upvotes: 4