Reputation: 2270
I have a CSV file that looks like this, where "time" is a UNIX timestamp:
time,count
1300162432,5
1299849832,0
1300006132,1
1300245532,4
1299932932,1
1300089232,1
1299776632,9
1299703432,14
... and so on
I am reading it into R and converting the time column into POSIXct like so:
data <- read.csv(file="data.csv",head=TRUE,sep=",")
data[,1] <- as.POSIXct(data[,1], origin="1970-01-01")
Great so far, but now I would like to build a histogram with each bin corresponding to the average hourly count. I'm stuck on selecting by hour and then counting. I've looked through ?POSIXt
and ?cut.POSIXt
, but if the answer is in there, I am not seeing it.
Any help would be appreciated.
Upvotes: 3
Views: 3268
Reputation: 13247
There's a good post on this topic on Mages' blog. To get the bucketed data:
aggregate(. ~ cut(time, 'hours'), data, mean)
If you just want a quick graph, ggplot2 is your friend:
qplot(cut(time, "hours"), count, data=data, stat='summary', fun.y='mean')
Unfortunately, because cut returns a factor, the x axis won't work properly. You may want to write your own, less awkward bucketing function for time, e.g.
timebucket = function(x, bucketsize = 1,
units = c("secs", "mins", "hours", "days", "weeks")) {
secs = as.numeric(as.difftime(bucketsize, units=units[1]), units="secs")
structure(floor(as.numeric(x) / secs) * secs, class=c('POSIXt','POSIXct'))
}
qplot(timebucket(time, units="hours"), ...)
Upvotes: 1
Reputation: 368241
Here is one way:
R> lines <- "time,count
1300162432,5
1299849832,0
1300006132,1
1300245532,4
1299932932,1
1300089232,1
1299776632,9
1299703432,14"
R> con <- textConnection(lines); df <- read.csv(con); close(con)
R> df$time <- as.POSIXct(df$time, origin="1970-01-01")
R> df$hour <- as.POSIXlt(df$time)$hour
R> df
time count hour
1 2011-03-15 05:13:52 5 5
2 2011-03-11 13:23:52 0 13
3 2011-03-13 09:48:52 1 9
4 2011-03-16 04:18:52 4 4
5 2011-03-12 12:28:52 1 12
6 2011-03-14 08:53:52 1 8
7 2011-03-10 17:03:52 9 17
8 2011-03-09 20:43:52 14 20
R> tapply(df$count, df$hour, FUN=mean)
4 5 8 9 12 13 17 20
4 5 1 1 1 0 9 14
R>
Your data doesn't actually yet have multiple entries per hour-of-the-day but this would average over the hours, properly parsed from the POSIX time stamps. You can adjust with TZ info as needed.
Upvotes: 3
Reputation: 21882
You can calculate the hour "bin" for each time by converting to a POSIXlt
and subtracting away the minute and seconds components. Then you can add a new column to your data frame that would contain the hour bin marker, like so:
date.to.hour <- function (vec)
{
as.POSIXct(
sapply(
vec,
function (x)
{
lt = as.POSIXlt(x)
x - 60*lt$min - lt$sec
}),
tz="GMT",
origin="1970-01-01")
}
data$hour <- date.to.hour(as.POSIXct(data[,1], origin="1970-01-01"))
Upvotes: 1