Reputation: 55
I am trying to create a new column in a pandas dataframe that sums the total of other columns. However, if any of the source columns are blank (NaN or 0), I need the new column to also be written as blank (NaN)
a b c d sum
3 5 7 4 19
2 6 0 2 NaN (note the 0 in column c)
4 NaN 3 7 NaN
I am currently using the pd.sum function, formatted like this
df['sum'] = df[['a','b','c','d']].sum(axis=1, numeric_only=True)
which ignores the NaNs, but does not write NaN to the sum column.
Thanks in advance for any advice
Upvotes: 4
Views: 991
Reputation: 323346
replace
your 0 to np.nan
then pass skipna = False
df.replace(0,np.nan).sum(1,skipna=False)
0 19.0
1 NaN
2 NaN
dtype: float64
df['sum'] = df.replace(0,np.nan).sum(1,skipna=False)
Upvotes: 1