Reputation: 633
Hi I am training a PyTorch model and occurred this error:
----> 5 for i, data in enumerate(trainloader, 0):
TypeError: 'torch.Size' object cannot be interpreted as an integer
Not sure what this error means.
You can find my code here :
model.train()
for epoch in range(10):
running_loss = 0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if i % 2000 == 0:
print (loss.item())
running_loss += loss.item()
if i % 1000 == 0:
print ('[%d, %5d] loss: %.3f' % (epoch, i, running_loss/ 1000))
running_loss = 0
torch.save(model, 'FeatureNet.pkl')
This is the codeblock for DataLoader. I am using a customized dataloader and datasets, which x
are pictures with size (1025, 16) and y
are one-hot encoded vectors for classification.
x_train.shape
= (1100, 1025, 16)
y_train.shape
= (1100, 10)
clean_dir = '/home/tk/Documents/clean/'
mix_dir = '/home/tk/Documents/mix/'
clean_label_dir = '/home/tk/Documents/clean_labels/'
mix_label_dir = '/home/tk/Documents/mix_labels/'
class MSourceDataSet(Dataset):
def __init__(self, clean_dir, mix_dir, clean_label_dir, mix_label_dir):
with open(clean_dir + 'clean0.json') as f:
clean0 = torch.Tensor(json.load(f))
with open(mix_dir + 'mix0.json') as f:
mix0 = torch.Tensor(json.load(f))
with open(clean_label_dir + 'clean_label0.json') as f:
clean_label0 = torch.Tensor(json.load(f))
with open(mix_label_dir + 'mix_label0.json') as f:
mix_label0 = torch.Tensor(json.load(f))
self.spec = torch.cat([clean0, mix0], 0)
self.label = torch.cat([clean_label0, mix_label0], 0)
def __len__(self):
return self.spec.shape
def __getitem__(self, index):
spec = self.spec[index]
label = self.label[index]
return spec, label
a, b = trainset.__getitem__(1000)
print (a.shape)
print (b.shape)
a.shape = torch.Size([1025, 16])
;
b.shape = torch.Size([10])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-9-3bd71e5c00e1> in <module>()
3 running_loss = 0
4
----> 5 for i, data in enumerate(trainloader, 0):
6
7 inputs, labels = data
~/anaconda3/lib/python3.7/site-packages/torch/utils/data/dataloader.py in __next__(self)
311 def __next__(self):
312 if self.num_workers == 0: # same-process loading
--> 313 indices = next(self.sample_iter) # may raise StopIteration
314 batch = self.collate_fn([self.dataset[i] for i in indices])
315 if self.pin_memory:
~/anaconda3/lib/python3.7/site-packages/torch/utils/data/sampler.py in __iter__(self)
136 def __iter__(self):
137 batch = []
--> 138 for idx in self.sampler:
139 batch.append(idx)
140 if len(batch) == self.batch_size:
~/anaconda3/lib/python3.7/site-packages/torch/utils/data/sampler.py in __iter__(self)
32
33 def __iter__(self):
---> 34 return iter(range(len(self.data_source)))
35
36 def __len__(self):
TypeError: 'torch.Size' object cannot be interpreted as an integer
Upvotes: 4
Views: 21172
Reputation: 24099
Your problem is the __len__
function. You cannot use the shape
as return value.
Here is an example for illustration:
import torch
class Foo:
def __init__(self, data):
self.data = data
def __len__(self):
return self.data.shape
myFoo = Foo(data=torch.rand(10, 20))
print(len(myFoo))
Will raise exactly the same error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-285-e97aace2f622> in <module>
7
8 myFoo = Foo(data=torch.rand(10, 20))
----> 9 print(len(myFoo))
TypeError: 'torch.Size' object cannot be interpreted as an integer
Since shape represents a torch.Size
tuple:
print(myFoo.data.shape)
Output:
torch.Size([10, 20])
So you have to decide which dimension you want to hand over to __len__
, for example the first dimension:
import torch
class Foo:
def __init__(self, data):
self.data = data
def __len__(self):
return self.data.shape[0] # choosing first dimension for len
myFoo = Foo(data=torch.rand(10, 20))
print(len(myFoo))
# prints 10
Works fine and returns 10
. Of course you can also choose any other dimension of your input, but you have to choose one.
So in your code of your MSourceDataSet
you have to change your __len__
function to for example:
def __len__(self):
return self.spec.shape[0] # as said of course you can also choose other dimensions
This should solve your problem.
Upvotes: 6