Reputation: 501
I have a dataframe in which I want to make a new column with values based on condition within groups. So for the dataframe below, I want to make a new column n_actions which gives
Cond1. for the whole group GROUP the number 2 if a 6 appears in column STEP Cond 2. for the whole group GROUP the number 3 if a 9 appears in column STEP Cond 3. if not a 6 or 9 appears within column STEP for the GROUP, then 1
#dataframe start
dataframe <- data.frame(group = c("A", "A", "A", "B", "B", "B", "B", "B", "B", "C", "C", "C", "D", "D", "D", "D", "D", "D", "D", "D", "D"),
step = c(1, 2, 3, 1, 2, 3, 4, 5, 6, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9))
# dataframe desired
dataframe$n_actions <- c(rep(1, 3), rep(2, 6,), rep(1, 3), rep(3, 9))
Upvotes: 0
Views: 399
Reputation: 6768
Try out:
library(dplyr)
dataframe %>%
group_by(group) %>%
mutate(n_actions = ifelse(9 %in% step, 3,
ifelse(6 %in% step, 2, 1)))
# A tibble: 21 x 3
# Groups: group [4]
group step n_actions
<fctr> <dbl> <dbl>
1 A 1 1
2 A 2 1
3 A 3 1
4 B 1 2
5 B 2 2
6 B 3 2
7 B 4 2
8 B 5 2
9 B 6 2
10 C 1 1
# ... with 11 more rows
Upvotes: 2
Reputation: 14774
Another way with dplyr
's case_when
:
library(dplyr)
dataframe %>%
group_by(group) %>%
mutate(
n_actions1 = case_when(
9 %in% step ~ 3,
6 %in% step ~ 2,
TRUE ~ 1
)
)
Output:
# A tibble: 21 x 3
# Groups: group [4]
group step n_actions
<fct> <dbl> <dbl>
1 A 1 1
2 A 2 1
3 A 3 1
4 B 1 2
5 B 2 2
6 B 3 2
7 B 4 2
8 B 5 2
9 B 6 2
10 C 1 1
11 C 2 1
12 C 3 1
13 D 1 3
14 D 2 3
15 D 3 3
16 D 4 3
17 D 5 3
18 D 6 3
19 D 7 3
20 D 8 3
21 D 9 3
Upvotes: 1
Reputation: 26373
You could divide the maximum value per group by %/% 3
, it seems.
dataframe <- transform(dataframe,
n_actions2 = ave(step, group, FUN = function(x) max(x) %/% 3))
dataframe
# group step n_actions n_actions2
#1 A 1 1 1
#2 A 2 1 1
#3 A 3 1 1
#4 B 1 2 2
#5 B 2 2 2
#6 B 3 2 2
#7 B 4 2 2
#8 B 5 2 2
#9 B 6 2 2
#10 C 1 1 1
#11 C 2 1 1
#12 C 3 1 1
#13 D 1 3 3
#14 D 2 3 3
#15 D 3 3 3
#16 D 4 3 3
#17 D 5 3 3
#18 D 6 3 3
#19 D 7 3 3
#20 D 8 3 3
#21 D 9 3 3
Upvotes: 1